
A Stroll Through the Complexity Zoo

An overview of the most important complexity classes other than P and NP

Rod Hilton

December 15, 2012

1 Introduction

Even Computer Science students very early in

their careers are familiar with the “big three”

complexity classes of P, NP, and NP-COMPLETE.

These three classes are closely related to the

biggest open questions in Computer Science,

with the question of P ?
= NP being one of Clay

Mathematics Institute’s Millennium Prize Prob-

lems.

While these three classes are the subject of

much ongoing research, the set of complexity

classes is much larger than many students know.

The Complexity Zoo1 - an online catalog of such

classes maintained by MIT faculty member Scott

Joel Aaronson - currently houses 495 different

complexity classes.

In this work, we will take a high-level tour of

some of the most important classes which are

not P, NP, or NP-COMPLETE. We will mostly

focus on complexity classes that measure time

complexity, and will largely ignore classes that

deal with space complexity in the interest of sav-

ing space2. We will also focus only on decision

problems rather than optimization problems or

counting problems.

1http://complexity-zoo.net/zoo/wiki/

Complexity_Zoo
2Ha!

We will see what these classes are, what kinds

of languages belong to them, how they relate

to other classes, what questions related to them

remain unanswered, what the most recent ad-

vancements related to them are, or any other

particularly interesting facts about the class. In

so doing, it is the goal to provide an overview

suitable for undergraduate or graduate students

wishing to start a journey deeper into Complex-

ity Theory.

2 DTIME and NTIME

A language in DTIME(f(n)) must be recognized

by some deterministic Turing machine that,

given an input size n, can recognize elements in

the language within O(f(n)) time. Many refer

to this class simply as TIME.

The class DTIME, because it can be parame-

terized, allows us to refer to more narrowly de-

fined time-complexity classes if they lack well-

understood names. For example, we can define

a complexity class for languages that can be rec-

ognized by a Turing machine in constant time,

such as all even binary integers, by referring

to DTIME(1). DTIME(logn) is common enough

that it is often referred to as DLOGTIME.

The class P can be defined in terms of DTIME,

as P =
⋃
k∈N DTIME(nk). The class EXPTIME

1

http://complexity-zoo.net/zoo/wiki/Complexity_Zoo
http://complexity-zoo.net/zoo/wiki/Complexity_Zoo


can be similarly defined, as EXPTIME =
⋃
k∈N

DTIME(2n
k
). This often expressed more simply

as EXPTIME = DTIME(2n
k
)

Closely related to this class is the Time

Hierarchy Theorem, which states that

DTIME(f(n)) must be strictly contained in

DTIME((f(2n+ 1))3). This theorem is used by

Hartmanis and Stearns [1965] to show that P is

a proper subset of EXPTIME.

Similarly, NTIME(f(n)) is a complexity class

for languages that can be recognized by a non-

deterministic Turing machine within O(f(n))

time. As before, NP =
⋃
k∈N NTIME(nk) and

NEXPTIME = NTIME(2n
k
).

NTIME has its a stronger hierarchy theorem

shown in Seiferas et al. [1978], that with func-

tions f and g and f(n+1) = o(g), NTIME(f(n))
is a strict subset of NTIME(g(n)).

[Papadimitriou, 1994] shows P = NP,

then EXPTIME = NEXPTIME, as well as if

EXPTIME 6= NEXPTIME, it would prove that

P 6= NP. It is generally accepted, however, that

proving this would be even more difficult than

proving P 6= NP in the first place [Papadim-

itriou, 1994]. This is true as we ascend a hi-

erarchy of exponential time classes. 2-NEXP =

NTIME(22
nk

), 3-NEXP = NTIME(22
2n

k

), and so

on, but if x-EXP were ever shown to not equal,

x-NEXP, the inequality would apply all the way

back down to EXPTIME 6= NEXPTIME and fi-

nally P 6= NP [Papadimitriou, 1994].

Some problems in EXPTIME include a modi-

fied version of the halting problem (does a ma-

chine halt within k steps), or evaluating a posi-

tion in Chess, Checkers, or Go.

3 PP and BPP

There are a handful of classes that are defined us-

ing randomized Turing machines. A randomized

Turing machine is one that has to periodically

choose between two possible moves, and it flips

a fair coin to decide which path to take.

A language is in PP iff there exists a ran-

domized Turing machine that runs in polynomial

time and decides membership in the language the

majority of the time. Such a machine can be in-

correct with a probability e so long as e < 1/2.

Another way of thinking about PP is to con-

sider the set of languages that can be recognized

by a nondeterministic Turing machine in poly-

nomial time where more than half of the compu-

tation paths accept.

PP has somewhat limited usefulness because,

in order to be confident in an answer from the

machine, one would have to re-run the ma-

chine on the same input multiple times until

the desired probability of correctness is achieved.

Imagine that a nondeterministic Turing machine

that recognizes a language has a million pos-

sible computation paths, and 500,001 of them

accept correctly. This meets the definition re-

quired for PP, but it’s extremely difficult to de-

termine, based on the decisions of the machine

alone, which half is the ‘error’ half. A good way

to conceptualize this is to imagine being given a

coin that has one slightly heavier side than the

other, and your task is to determine which.

Determining which half has the slight bias

requires an exponential number of experiments

[Papadimitriou, 1994], so it’s somewhat more

useful to have a class in which the probability

of error is more restrictive. BPP is just such a

class.

A language is in BPP iff there exists some

randomized Turing machine that runs in poly-

nomial time and decides membership correctly

with probability 3/4. The name BPP stands

for Bounded-error Probabilistic Polynomial. In

other words, rather than deciding by a mere ma-

jority, the Turing machine will decide by a “clear

majority” [Papadimitriou, 1994].

2



It actually doesn’t matter what probability is

chosen for BPP as long as it is strictly greater

than 1/2 and less than 1; any other probability

within this range would still result in the same

class. Imagine we were talking about any prob-

ability in this range 1
2 + ε. The machine can be

made to decide on set membership 2k+ 1 times,

thus making the probability of a false answer

e−2ε
2k. The probability can be made as small

as we wish by running the machine a polynomial

number of times, so the probability itself isn’t

critical, but often 3/4 is used (we can reduce our

error to 1/4 by letting k = d ln 2
e2
e).

Since all of these probabilities for BPP are

greater than 1/2, it’s clear that BPP ⊆ PP. Fur-

thermore, since a clear majority is required in

both the cases where the Turing machine cor-

rectly accepts as well as where it correctly re-

jects, BPP is closed under complement (BPP =

CO-BPP). Since P is just BPP with an error rate

of 0, P ⊆ BPP.

What is not yet known is whether BPP ⊆ P
and thus if BPP = P. For many years, the go-

to example of a language in BPP that was not

known to be in P was determining whether a

number was prime. One can test for primality in

a probabilistic way using the Miller-Rabin pri-

mality test or the Solovay-Strassen test, both of

which can be run as many times as needed to

achieve a particular desired confidence in the an-

swer, showing PRIMES to clearly be in BPP.

However, in 2002, Agrawal et al. [2004] showed

that PRIMES is in P, reducing the number of

problems known to be in BPP that are not also

in P. It is not yet known if P = BPP, though it is

strongly suspected to be the case as the number

of problems known to be in BPP but not known

to be in P has been decreasing.

If P = BPP, it would mean that random-

ized Turing machines cannot make it possible

to solve NP-COMPLETE problems in polynomial

time (unless P = NP). It is not currently known

if BPP ⊂ NP or NP ⊂ BPP [Rich, 2008].

4 RP, CO-RP, and ZPP

PP and BPP both have tolerances for false neg-

atives as well as false positives. These are re-

ferred to as having “two-sided” error. However,

it is possible to build machines that have “one-

sided” errors - meaning they can have errors in

only one direction - which define RP and CO-RP.

A language is in RP if there is a randomized

Turing machine, similar to the ones used to de-

fine PP and BPP, that runs in polynomial time

and accepts inputs with probability > 1/2/, but

rejects with a probability of 1. In other words,

when the input is not in the language, the ma-

chine will always reject. When it is, the machine

will be right more often than not. It can incor-

rectly reject, but it will never incorrectly accept.

CO-RP is the opposite, it can incorrectly ac-

cept but it will never incorrectly reject. If an

input is in the language in RP, the machine will

always accept, and if it is not it will reject with

a probability greater than 1/2.

A language in CO-RP that has not yet been

shown to be in P is that of Polynomial Identity

Testing, the set of arithmetic expressions is iden-

tical to the zero-polynomial.

Finally, there is ZPP, proposed by Gill [1977].

For a language to be in ZPP, a randomized Tur-

ing machine must exist that decides “Yes”, “No”,

or “Don’t Know”; it must always return either

the correct answer or “Don’t Know” (it can never

be wrong), and it must return “Don’t Know”

with a probability less than 1/2. ZPP is often

defined as RP ∩ CO-RP.

P ⊆ ZPP but it is still an open problem if

ZPP = P. We know P ⊆ ZPP and ZPP ⊆ RP ⊆
NP and ZPP ⊆ CO-RP ⊆ CO-NP [Rich, 2008].

An NP-COMPLETE problem being found in RP

3



would impliy that NP = RP which is, though

theoretically possible, considered very unlikely

[Moret, 1998]. In other words, RP is likely not

the magic bullet for solving extremely hard prob-

lems.

Interestingly, despite the fact that the cor-

responding question for nondeterminism (P =

NP∩CO-NP), we know that ZPP = RP∩CO-RP
[Arora, 2009].

5 MA and AM

Two interesting complexity classes make use of

an ‘Merlin-Arthur’ protocol. Imagine two play-

ers of a game, Arthur (a normal person) and

Merlin (a powerful wizard). Given an instance

of some problem, Merlin has unlimited compu-

tational power at his disposal, but cannot be

trusted to be telling the truth. In other words,

Merlin is an Oracle that can lie. Because he can

lie, Arthur must verify whatever Merlin tells him,

but he has the power of a BPP machine. In an

Merlin-Arthur protocol, Merlin provides a poly-

nomial proof that the answer to a problem is

‘yes’, and Arthur must verify it. If the answer

really is ‘yes’, Arthur must accept with a proba-

bility of more than 2/3, and if ‘no’ he must reject

with a probability of more than 1/3.

Another way of thinking about the Merlin-

Arthur protocol is by considering it as a more

random version of NP, where the oracle can lie

and the machine using it must be probabilisti-

cally certain of its answer. As such, NP ⊆ MA.

Arthur can ignore Merlin and solve the problem

using his BPP machine, so BPP ⊆ MA. Further,

Vereschchagin [1992] shows that MA ⊆ PP.

MA can be made more powerful by modifying

the protocol a bit. Imagine that Arthur were to

pre-flip all of the coins he would need to in order

to determine his computation path through his

BPP machine. This can be done without loss

of generality because the sequence of coin-flips

is independent of the computation itself, so it

can be done ahead of time. Now, imagine that

Arthur sends his sequence of coin-flips to Merlin

before Merlin gives his answer. This modified

protocol, the Arthur-Merlin (notice the reversed

order) describes the class AM. In fact, you can

have k rounds of interaction between Arthur and

Merlin to describe AM[k]

Babai [1988] showed that, for any k, AM[k] =

AM. Obviously, MA ⊆ AM because Arthur can

get a response from Merlin, flip all of his coins,

send again, and ignore Merlin’s response. It re-

mains an open question whether AM = MA.

An example of a problem in AM is graph non-

isomorphism, determining if two graphs G1 and

G2 can not have their nodes reordered such that

they are identical. This problem is not known

to be in NP, but Merlin could convince Arthur

that it is so. Imagine Arthur has two graphs G1

and G2. He reorders one of these graphs, let’s

say G1, at random, to get H, then sends H to

Merlin, who must respond by declaring whether

G1 or G2 was the graph that was reshuffled into

H. If the two graphs are isomorphic, Merlin has

no way of knowing which one was shuffled into

H, so his guesses will be random. However, if

the two graphs are actually isomorphic, Merlin

will have the same answer no matter how many

times the protocol is repeated. Thus, if Mer-

lin answers consistently after a sufficient number

of repetitions, Arthur can be confident that the

graphs are not isomorphic.

These classes both have related classes,

MAEXP and AMEXP, which modify the classes so

that Arthur can run in exponential time rather

than polynomial, and messages between the par-

ticipants can be exponentially long.

4



6 P/POLY

P/POLY is defined as set of languages which can

be decided by Turing machines in polynomial

time, when given “advice strings”. An advice

string is a string of input whose lengths are poly-

nomial of the machine input, but whose contents

do not depend on the input itself, and can be

chosen however needed to help the algorithm de-

cide. The reason this advice string is polynomi-

ally bounded is that, if it wasn’t, any language

could be decided simply by giving as an advice

string a gigantic exponentially-sized lookup table

of answers.

Another way P/POLY is often defined is as

a class of languages that can be decided by

polynomial-size circuits, which can be imagined

as graphs with n inputs and one output, where

each node represents a boolean operation, and

whose number of nodes is a polynomial of n.

If NP 6⊂ P/POLY, then P 6= NP [Karp and

Lipton, 1980]. For many years, attempts were

made to prove P 6= NP by proving that NP 6⊂
P/POLY but so far there has been no success.

If NP ⊆ P/POLY, then MA = AM.

Furthermore, if EXPTIME ⊆ P/POLY, then

EXPTIME = AM and if NEXPTIME ⊆ P/POLY,

then EXPTIME = NEXPTIME = MA.

P/POLY has many cryptographic uses, with the

security of an encyption scheme being analyzed

by treating the adversaries as P/POLY instances.

Since BPP ⊆ P/POLY, doing this allows cryptol-

ogists to assume adversaries have access to the

very practical BPP, as well as access to mas-

sive (but bounded) precomputed data, such as

rainbow tables (a huge table for reversing 1-way

hashes).

P/POLY is particularly interesting because it

can decide some languages that are undecidable.

To see this, we must first define a unary lan-

guage, which is any language in the form fk

where f is some fixed symbol that doesn’t mat-

ter. What matters is what we define k to be in

the language, such as “k is prime”. Every lan-

guage can be mapped to a set of numbers, which

means every language A has a unary version of

it (1k|k ∈ A). There’s also a complexity class for

all of these kinds of languages, TALLY.

UHALT is the unary version of the halting

problem, which is fair since every language has

a unary version. Define UHALT = {1n|n’s bi-

nary expansion encodes a pair 〈M,x〉 such that

M halts on x}. P/POLY is non-uniform, which

means the circuit it uses can be chosen in any

way as long as it’s the same for every length. So

we can choose a circuit for each n by treating n

as the circuit length. If n ∈ HALT , then the

circuit will be true for an input w iff w is all 1’s

of length n. Since this can be implemented by

a circuit polynomial to size n, this is fair to do,

and thus P/POLY contains UHALT. This is an in-

credibly surprising fact, the key to understand-

ing it is to realize that we can pull the circuit

out of a magic hat that gives us whatever circuit

we want as long as it varies only with the input

length [Arora, 2009].

7 NC and AC

Similar to P/POLY, there are a number of other

classes that deal with circuit complexity. For

any d, NCd is the set of languages that can be

decided by a family of circuits Cn where Cn is a

polynomial of n and is no deeper than O(logdn).

The class NC3 is the union of all such NCd’s for

all integers d.

The class AC is similar, with ACd defined the

same as NCi except that the OR and AND gates

can have more than 2 bits (the fan-in) as input.

AC is, of course, the union of all ACd’s.

Because fan-in on an AND or OR gate that

3NC stands for Nick’s Class, named after Nick Pip-
penger by Stephen Cook

5



is polynomial of n can be simulated by a tree

of depth O(logn), the interesting property arises

that, for any i, NCi ⊆ ACi ⊆ NCi+1. Further-

more, since for any i, NCi ⊆ ACi, it follows that

NC = AC.

AC0 is the smallest of the AC classes, it’s the

family of circuits that can only have a depth of

O(1), but an unlimited fan-in on the gates. AC0

is a very limited class, and it was shown by Furst

et al. [1984] that the class cannot decide PAR-

ITY, the language of binary integers with an odd

number of 1’s. However, NC1 does contain this

language, by building circuits resembling binary

trees which compute the parity of their respec-

tive halves recursively. The depth of such a tree

would be O(logn).

NC is generally used to characterize languages

which have very efficient parallel algorithms, be-

cuase the work of the circuits can be split and

done independently, as in the PARITY example.

In the same way that problems are P are consid-

ered tractable for computers, problems in NC
are considered tractable for parallel computers

[Homer and Selman, 2011]. It contains problems

of integer addition, multiplication, division, ma-

trix multiplication and inversing, and many more

problems which are considered highly paralleliz-

able.

It is not yet known if P = NC, in other words,

if any highly parallelizable problem can be solved

in polynomial time without parallelization. It

is generally suspected that the answer to this

question is negative [Arora, 2009].

8 BQP and QMA

The class BQP is the set of languages recogniz-

able by a quantum Turing machine, with at most
1/3 chance of error. It is, effectively, the quan-

tum version of BPP. A quantum Turing machine

works like a regular Turing machine, except that

the tape and the read-write device are not re-

stricted to values of only 0 and 1, but can also

be in a superposition of 0 and 1 and everything in

between. So while a regular Turing machine can

only make one calculation at a time, a quantum

Turing machine can make many calculations all

at once.

There is also the class QMA, which is the

quantum analogue of NP or MA. It’s the set

of languages for which, when an element is in

the language, there is a polynomial-size quan-

tum proof that can convince a verifier (Arthur)

that this is the case with a high probability (as

well as when an element is not in the language).

P ⊆ BPP ⊆ BQP ⊆ PP and P ⊆ NP ⊆ MA ⊆
QMA ⊆ PP. BQP is generally considered the

class of feasible problems on quantum comput-

ers, like P and BPP, while QMA is generally

considered probably infeasible. Scott Aaronson

has argued (but not proved) that BQP does not

contain NP, which is to say, quantum computers

cannot be used to solve NP-COMPLETE problems.

9 PH

Let’s define three new classes, all equal to P. P =

∆0P = Σ0P = Π0P . Each of these classes will

be used as oracles in a new set of classes, adding

power to the class. So ∆1P = P with a Σ0P

oracle, Σ1P = NP with a Σ0P oracle, and Π1P =

CO-NP with a Σ0P oracle. The first level of this

hierarchy is another way to refer to the more

familiar complexity classes, as ∆1P = P, Σ1P =

NP, and Π1P = CO-NP More generally:

• ∆iP = P with a Σi−1P oracle

• ΣiP = NP with a Σi−1P oracle

• ΠiP = CO-NP with a Σi−1P oracle

If we take the union of all of these classes, for

all i, the resulting class is PH, the Polynomial-

Time Hierarchy class.

6



Schaefer and Umans [2002] has a massive list,

updated regularly (latest update in 2008), of dif-

ferent problems and which particular class in-

side of PH they belong. For example, MIN-

MAX CLIQUE is in Π2P , while CLIQUE COL-

ORING is in Σ2P . The problem of MINIMUM

CIRCUIT, which determines if a boolean circuit

can be represented by an equivalent circuit with

fewer gates, is Π2P .

Toda [1989] shows that PH ⊆
P with a PP oracle . If P = NP then the

entire PH hierarchy collapses to P. Σ2P

contains AM.

Without proof that P 6= NP, Papadimitriou

[1994] argues that it is impossible to show that

each level of the hierarchy properly contains the

next. We know that PH ⊆ PSPACE, but it is an

open question if PH = PSPACE. If it were the

case that PH = PSPACE, then once again the

entire PH hierarchy would collapse [Hemaspaan-

dra and Ogihara, 2001].

10 Remarks

We’ve looked at many complexity classes

here, including AC0, AC, AM, BPP, BQP,

DLOGTIME, DTIME, EXPTIME, MA, NC,

NEXPTIME, NTIME, P/POLY, PH, PP,

PSPACE, RP, QMA, TALLY, ZPP, CO-BPP,

CO-NP, CO-RP, and of course P, NP, and

NP-COMPLETE. Still, that’s only 26 classes,

leaving over 450 more classes in the Complexity

Zoo that haven’t even been mentioned. Many of

these classes are small tweaks and variations on

those covered, but Complexity Theory is still an

immense field.

These many classes often share tight relation-

ships with other classes, with a single equivalence

or containment proof kicking off a series of col-

lapsing hierarchies or equalities. And of course,

many of these classes have open problems whose

solutions would lead directly to solving the white

whale of Complexity Theory, P ?
= NP.

Scott Aaronson, keeper of the Complexity

Zoo, published a post on his blog a few years

ago entitled “Eight Signs A Claimed P 6= NP
Proof Is Wrong”4. In the post, Dr. Aaronson

implores readers not to dismiss a proof based on

the author’s credentials or background, but to

challenge the proofs when they fail to address

eight specific points. Nearly all eight of these

points involve an author not explaining how his

or her proof interplays with various complexity

classes and languages. The third, for example,

states:

The paper doesn’t prove any weaker

results along the way: for example,

P 6= PSPACE, NEXP 6⊂ P/POLY ... P

vs. NP is a staggeringly hard prob-

lem, which one should think of as being

dozens of steps beyond anything that

we know how to prove today.

Given how important these varied complexity

classes may prove to be in the process of chipping

away at the P ?
= NP question, it’s certainly ben-

eficial to study and understand them, and The

Complexity Zoo is an indispensable resource.

References

M. Agrawal, N. Kayal, and N. Saxena. Primes is

in p. Annals of mathematics, pages 781–793,

2004.

S. Arora. Computational complexity : a modern

approach. Cambridge University Press, Cam-

bridge New York, 2009. ISBN 9780521424264.

L. Babai. Arthur-merlin games: A randomized

proof system and a hierarchy of complexity

4http://www.scottaaronson.com/blog/?p=458

7

http://www.scottaaronson.com/blog/?p=458


classes. J. Comput. Syst. Sci., 36:254–276,

1988.

M. Furst, J. Saxe, and M. Sipser. Parity, circuits,

and the polynomial-time hierarchy. Theory of

Computing Systems, 17(1):13–27, 1984.

J. Gill. Computational complexity of probabilis-

tic turing machines. SIAM Journal on Com-

puting, 6(4):675–695, 1977.

J. Hartmanis and R. Stearns. On the computa-

tional complexity of algorithms. Transactions

of the American Mathematical Society, pages

285–306, 1965.

L. Hemaspaandra and M. Ogihara. The complex-

ity theory companion. Springer, 2001.

S. Homer and A. Selman. Computability and

complexity theory. Springer, New York, 2011.

ISBN 9781461406815.

R. Karp and R. Lipton. Some connections

between nonuniform and uniform complex-

ity classes. In Proceedings of the twelfth an-

nual ACM symposium on Theory of comput-

ing, pages 302–309. ACM, 1980.

B. Moret. The theory of computation. Addison-

Wesley, Reading, Mass, 1998. ISBN

9780201258288.

C. Papadimitriou. Computational complexity.

Addison-Wesley, Reading, Mass, 1994. ISBN

9780201530827.

E. Rich. Automata, computability and complexity

: theory and applications. Pearson Prentice

Hall, Upper Saddle River, N.J, 2008. ISBN

9780132288064.

M. Schaefer and C. Umans. Completeness in the

polynomial-time hierarchy: A compendium.

SIGACT news, 33(3):32–49, 2002.

J. Seiferas, M. Fischer, and A. Meyer. Separat-

ing nondeterministic time complexity classes.

Journal of the ACM (JACM), 25(1):146–167,

1978.

S. Toda. On the computational power of pp and

p. In Foundations of Computer Science, 1989.,

30th Annual Symposium on, pages 514–519.

IEEE, 1989.

N. Vereschchagin. On the power of pp. In Struc-

ture in Complexity Theory Conference, 1992.,

Proceedings of the Seventh Annual, pages 138–

143. IEEE, 1992.

8


	Introduction
	DTIME and NTIME
	PP and BPP
	RP, co-RP, and ZPP
	MA and AM
	P/poly
	NC and AC
	BQP and QMA
	PH
	Remarks

