
Quantitatively Evaluating

Test-Driven Development by

Applying Object-Oriented Quality

Metrics to Open Source Projects

Rod Hilton

Department of Computer & Information Sciences

Regis University

A thesis submitted for the degree of

Master of Science in Software Engineering

December 19, 2009

Abstract

Test-Driven Development is a Software Engineering practice gaining in-

creasing popularity within the software industry. Many studies have been

done to determine the effectiveness of Test-Driven Development, but most

of them evaluate effectiveness according to a reduction in defects. This

kind of evaluation ignores one of the primary claimed benefits of Test-

Driven Development: that it improves the design of code. To evaluate

this claim of Test-Driven Development advocates, it is important to eval-

uate the effect of Test-Driven Development upon object-oriented metrics

that measure the quality of the code itself. Some studies have measured

code in this manner, but they generally have not worked with real-world

code written in a natural, industrial setting. Thus, this work utilizes

Open Source Software as a sample for evaluation, separating Open Source

projects that were written using Test-Driven Development from those that

were not. These projects are then evaluated according to various object-

oriented metrics to determine the overall effectiveness of Test-Driven De-

velopment as a practice for improving the quality of code. This study finds

that Test-Driven Development provides a substantial improvement in code

quality in the categories of cohesion, coupling, and code complexity.

Acknowledgements

There are a number of people without whom this work would not have

been completed.

First, I would thank the developers working on Apache Commons, Blo-

jsam, FitNesse, HTMLParser, Jalopy, JAMWiki, Jericho HTML Parser,

JSPWiki, JTidy, JTrac, JUnit, Roller, ROME, and XWiki for taking the

time to fill out the survey that was instrumental in my research.

I would like to also acknowledge Rally Software and particularly Adam

Esterline and Russ Teabeault, who taught me about Test-Driven Devel-

opment in the first place.

I wish to thank my thesis advisor, Professor Douglas Hart, who tolerated

an endless barrage of drafts and late changes without completely cutting

off communication with me.

Most importantly, I offer my sincerest gratitude to my wife, Julia, whose

encouragement and companionship were absolutely crucial in completing

this work.

Contents

1 Introduction 1

2 Test-Driven Development 5

Practicing Test-Driven Development . 5

Benefits of Test-Driven Development . 7

Effect on Code . 8

3 Existing Research on Test-Driven Development 10

The University of Karlsruhe Study . 10

The Bethel College Study . 12

The IBM Case Study . 14

The Microsoft Case Studies . 15

The Janzen Study . 16

Summary . 18

4 Measuring Code Quality 19

Cohesion . 20

Lack of Cohesion Methods . 21

Specialization Index . 23

Number of Method Parameters . 25

Number of Static Methods . 25

Coupling . 26

Afferent and Efferent Coupling . 27

Distance from The Main Sequence 28

Depth of Inheritance Tree . 31

Complexity . 32

Quantitatively Evaluating Test-Driven Development iv

Size of Methods and Classes . 33

McCabe Cyclomatic Complexity . 34

Nested Block Depth . 36

5 Description of Experiment 38

Survey Setup . 38

Survey Results . 39

Selecting the Experimental Groups . 41

Exclusions . 44

Versions . 44

Static Analysis Tools . 45

6 Experimental Results 48

Effect of TDD on Cohesion . 49

Lack of Cohesion Methods . 49

Specialization Index . 50

Number of Parameters . 51

Number of Static Methods . 53

Overall . 53

Effect of TDD on Coupling . 54

Afferent Coupling . 54

Efferent Coupling . 56

Normalized Distance from The Main Sequence 56

Depth of Inheritance Tree . 57

Overall . 58

Effect of TDD on Complexity . 59

Method Lines of Code . 59

Class Lines of Code . 60

McCabe Cyclomatic Complexity . 61

Nested Block Depth . 62

Overall . 63

Overall Effect of TDD . 64

Threats to Validity . 64

Quantitatively Evaluating Test-Driven Development v

7 Conclusions 67

Further Work . 69

A Metrics Analyzer Code 77

List of Figures

1.1 Test-Driven Development Job Listing Trends from January 2005 to

July 2009 . 2

2.1 The TDD Cycle . 6

4.1 SI Illustration . 24

4.2 Coupling Example . 28

4.3 The Main Sequence . 30

4.4 An Example Inheritance Tree . 32

4.5 Example Program Stucture Graph . 36

5.1 TDD Survey . 42

5.2 The Eclipse Metrics Plugin . 46

6.1 Lack of Cohesion Methods by Project Size 49

6.2 Specialization Index by Project Size 50

6.3 Number of Parameters by Project Size 52

6.4 Number of Static Methods by Project Size 53

6.5 Afferent Coupling by Project Size . 55

6.6 Efferent Coupling by Project Size . 56

6.7 Normalized Distance from The Main Sequence by Project Size 57

6.8 Depth of Inheritance Tree by Project Size 58

6.9 Method Lines of Code by Project Size 60

6.10 Class Lines of Code by Project Size 61

6.11 McCabe Cyclomatic Complexity by Project Size 62

6.12 Nested Block Depth by Project Size 63

Chapter 1

Introduction

The term Software Engineering was first coined at the NATO Software Engineering

Conference in 1968. In the proceedings, there was a debate about the existence of

a “software crisis” (Naur and Randell, 1969). The crisis under discussion centered

around the fact that software was becoming increasingly important in society, yet the

existing practices for programming computers were having a difficult time scaling to

the demands of larger, more complex systems. One attendee said “The basic problem

is that certain classes of systems are placing demands on us which are beyond our

capabilities and our theories and methods of design and production at this time.” In

short, the rate at which the need for software was increasing was exceeding the rate

at which programmers could learn to scale their techniques and methods. In a very

real way, improving the techniques employed to build software has been the focus of

Software Engineering as long as the phrase has existed.

It is no surprise, then, that the bulk of progress made in the field of Software En-

gineering in the last forty years has been focused on improving these techniques. From

the Capability Maturity Model for Software to the Agile Manifesto, from Big Design

Up Front to Iterative Design, and from Waterfall to eXtreme Programming, signifi-

cant efforts have been made within the industry to improve the ability of professional

programmers to write high-quality software for large, critical systems. One particular

effort that has been gaining a great deal of respect in the industry is Test-Driven De-

velopment (TDD). As shown in Figure 1.1, according to job listing aggregation site

Indeed.com, the percentage of job postings that mention “Test Driven Development”

has more than quadrupled in the last four years.

Quantitatively Evaluating Test-Driven Development 2

Figure 1.1: Test-Driven Development Job Listing Trends from January 2005 to July

2009

Test-Driven Development is catching on in the industry, but as a practice it

is still very young, having only been proposed (under the name Test-First Program-

ming) fewer than ten years ago by Kent Beck as part of his eXtreme Programming

methodology according to Copeland (2001). Test-Driven Development is not com-

plicated, but it is often misunderstood. The details of Test-Driven Development are

covered in Chapter 2.

Many professional and academic researchers have made attempts to determine

how effective Test-Driven Development is, many of which are discussed in Chapter

3. Of course, determining how effective Test-Driven Development is first requires

defining what it means to be effective and how effectiveness will be measured. Most

research in this area focuses on measuring the quality of software in terms of pro-

grammer time or errors found. While this is very useful information, it measures the

effectiveness of Test-Driven Development on improving external quality, not internal

quality.

A clear distinction between internal and external quality has been made by

Freeman and Pryce (2009). External quality is a measurement of how well a system

meets the needs of users. When a system works as users expect, it’s responsive, and

it’s reliable, it has a high degree of external quality. Internal quality, on the other

hand, is a measurement of how well a system meets the needs of the developers. When

Quantitatively Evaluating Test-Driven Development 3

a system is easy to understand and easy to change, it has a high degree of internal

quality. Essentially, external quality refers to the quality of software, while internal

quality refers to the quality of code.

End users and engineers alike may feel the pain of low external quality, but

only the engineers feel the pain associated with low internal quality, often referred to

as “bad code”. Users may observe slipped deadlines, error messages, and incorrect

calculations in the software they use, but only the engineers behind that software

observe the fact that adding a new widget to the software might require modifying

hundreds of lines of code across twenty different files.

If the end users are happy, does it matter what the engineers think? Does

code quality matter? Abelson and Sussman (1996) answer this question succinctly

by saying “Programs must be written for people to read, and only incidentally for

machines to execute.” In other words, the most important thing a good program can

do is be readable, which makes it easier to maintain. Indeed, being understandable

by other engineers is often more important than being functionally correct, since an

incorrect program can be made correct by another engineer, but only if it is under-

standable to that engineer. Abelson and Sussman (1996) go on to say “The essential

material to be addressed [. . .] is not the syntax of particular programming-language

constructs, nor clever algorithms for computing particular functions efficiently, nor

even the mathematical analysis of algorithms and the foundations of computing, but

rather the techniques used to control the intellectual complexity of large software

systems.”

Bad code hinders new development. Rather than adding new features to soft-

ware, software engineers often spend their days fighting through a mess of spaghetti

code, tracking down unexpected side effects from small changes, and scratching their

heads to figure out what the source code is doing.

Martin (2008) shares a story from his career as a software engineer:

“I know of one company that, in the late 80s, wrote a killer app. It was

very popular, and lots of professionals bought and used it. But then the

release cycles began to stretch. Bugs were not repaired from one release

to the next. Load times grew and crashes increased. I remember the

day I shut the product down in frustration and never used it again. The

company went out of business a short time after that.

Quantitatively Evaluating Test-Driven Development 4

Two decades later I met one of the early employees of that company

and asked him what had happened. The answer confirmed my fears. They

had rushed the product to market and had made a huge mess in the code.

As they added more and more features, the code got worse and worse

until they simply could not manage it any longer. It was the bad code

that brought the company down.”

Bad code eventually leads to bad software in the form of defects and missed

deadlines, but measuring the effectiveness of a practice like Test-Driven Development

by measuring the external quality of software is like measuring the presence of a fire

by detecting smoke. A fire can burn for quite some time before generating any smoke;

by the time smoke is detected, it may be too late.

To truly determine the effectiveness of Test-Driven Development, it must be

analyzed in terms of how it improves internal code quality. To accomplish this, this

work uses object-oriented metrics, which are discussed in Chapter 4. They are used to

measure the quality of the code written using Test-Driven Development and compare

it to the code written using more traditional means of software development. The

code for this comparison comes from publicly available Open Source projects, the

details of which are discussed in Chapter 5.

The goal of using Open Source projects is to build a large enough sample of code

to yield informative results, which will help determine if Test-Driven Development

is truly an effective means of improving the quality of code and, as an end-result,

software. The results of this experiment are discussed in Chapter 6.

Chapter 2

Test-Driven Development

Test-Driven Development (TDD) is one of the key engineering practices of eXtreme

Programming (XP), created by Kent Beck in 1999 and detailed by Beck and Andres

(2004). XP was created to help developers deliver quality code quickly. To that end,

Test-Driven Development is used to design and develop code incrementally, ensuring

that the only code written is absolutely crucial to the system and that all code written

is inherently testable.

In the Test-Driven Development process, the code that is written is determined

by the tests that an engineer writes. The engineer first write the test, then write

the code it is meant to test. This approach is, to a great extent, counterintuitive.

Developers tend to think of tests as the thing that proves that code works, but Test-

Driven Development requires that engineers think of code as the thing that makes

the tests pass.

Practicing Test-Driven Development

When using Test-Driven Development, the first thing an engineer does is think about

how to make the smallest change to move the code closer to implementing a particular

feature. Next, the engineer writes a test for that code change. When that test runs, it

should fail, yielding a red bar in the unit testing framework being used. It should fail

because the code hasn’t been written yet to make it pass. Next, the engineer makes

the code change needed to make the test pass - this code should be the bare minimum

amount of code possible to make the test pass, and it doesn’t have to be “good code”

Quantitatively Evaluating Test-Driven Development 6

at all. Once the test passes and the unit testing framework shows a green bar, the

engineer refactors the code, cleaning it up without changing functionality. After each

small step in the refactoring, the tests are run again to ensure that the tests still pass

after every change. This cycle repeats for each incremental step toward completing

the feature, until the feature is implemented.

Figure 2.1: The TDD Cycle

The diagram in Figure 2.1, adapted from the work of Lui and Chan (2008),

illustrates the typical TDD process. First, think about what to do, write a failing

test and get a red bar from the unit testing framework. Then, write the code to make

the test pass and get a green bar. Finally, refactor the code as much as possible,

and move to the next task. Koskela (2007) describes this cycle with the mnemonic

“red-green-refactor.”

The refactoring is extremely important to the process of Test-Driven Develop-

ment. The code that makes the test pass need not be great-looking code, it should

just be what needs to be written to make the test pass. The passing tests tell the

engineer that he or she is still on the right track while the code gets refactored and

improved. When refactoring, new behavior should not be added, but implementations

should be improved while the behavior remains the same. Beck and Fowler (2000)

Quantitatively Evaluating Test-Driven Development 7

describe this using a metaphor of “two hats”: developers can wear an implementation

hat or a refactoring hat, but cannot wear both at once.

Determining exactly when it’s time to stop refactoring and move on to the next

task is subjective, but the fact that the methodology builds in time to improve the

quality of code is meant to enable engineers to keep their code as clean as possible.

Benefits of Test-Driven Development

Test-Driven Development advocates claim it offers many benefits to software engi-

neers. These include:

Predictability: Beck (2002) suggests that Test-Driven Development allows engi-

neers to know when they are finished because they have written tests to cover

all of the aspects of a feature, and all of those tests pass.

Learning: Beck (2002) also claims Test-Driven Development gives engineers a chance

to learn more about code. He argues that “if you only slap together the first

thing you think of, then you never have time to think of a second, better thing”.

Reliability: Martin (2002) argues that one of the greatest advantages of Test-Driven

Development is having a suite of regression tests covering all aspects of the

system. Engineers can modify the program and be notified immediately if they

have accidentally modified functionality.

Speed: A work by Shore and Warden (2007) points out that Test-Driven Develop-

ment helps develop code quickly, since developers spend very little time debug-

ging and they find mistakes sooner.

Confidence: Astels (2003) maintains that one of Test-Driven Development’s greatest

strengths is that no code goes into production without tests associated with it,

so an organization whose engineers are using Test-Driven Development can be

confident that all of the code they release behaves as expected.

Cost: It is argued by Crispin and House (2002) that, because developers are respon-

sible for writing all of the automated tests in the system as a byproduct of

Test-Driven Development, the organization’s testers are freed up to do things

Quantitatively Evaluating Test-Driven Development 8

like perform exploratory testing and help define acceptance criteria, helping

save the company developing the software precious resources.

Scope Limiting: Test-Driven Development helps teams avoid scope creep according

to Beck and Andres (2004). Scope creep is the tendency for developers to write

extra code or functionality “just in case,” even if it isn’t required by customers.

Because adding the functionality requires writing a test, it forces developers to

reconsider whether the functionality is really needed.

Managability: Koskela (2007) points out that human beings can only focus on

about seven concepts at a time, and using Test-Driven Development forces

programmers to focus on only a few pieces of functionality at a time. Splitting

the big system into smaller pieces via tests makes it easier for programmers to

manage complex systems in their heads.

Documentation: It is noted by Langr (2005) that Test-Driven Development creates

programmer documentation automatically. Each unit test acts as a part of

documentation about the appropriate usage of a class. Tests can be referred to

by programmers to understand how a system is supposed to behave, and what

its responsibilities are.

While these advantages are substantial, Beck (2002) summarizes the greatest

benefit of Test-Driven Development as “clean code that works.” Test-Driven Devel-

opment is primarily meant to yield good, clean code. It’s not about the quality of

the software, it’s about the quality of the code.

Effect on Code

It is important to distinguish between Test-Driven Development and merely writing

unit tests (often called Test-Last Development). Studies such as those done by Zhu

et al. (1997) have illustrated that writing tests helps increase the quality of software,

but the mere existence of tests has little power to improve the quality of code. While a

comprehensive unit test suite enables safe refactoring and refactoring encourages code

quality improvements, Test-Driven Development is about much more than simply

enabling engineers to improve the quality of code. As North (2003) argues, Test-

Driven Development, despite the name, is not about writing tests, it’s about driving

Quantitatively Evaluating Test-Driven Development 9

the creation of the code to improve its quality. Ford (2009) acknowledges that the

perception of Test-Driven Development is that the key benefit is a comprehensive

suite of unit tests, but argues that the real benefit is that it “can change the overall

design of your code for the better because it defers decisions until the last responsible

moment.”

Test-Driven Development means that every decision made in code design is

driven by a test, and that test is driven by the need to develop a feature. Burke

and Coyner (2003) explain that it discourages large-scale, up-front code design, and

instead encourages developers to accurately design each small change and write the

code for it right away. Test-Driven Development drives the design of the code, con-

tinually forcing developers to write code that is easy to test and therefore likely to

be highly modular. Test-Driven Development enables what Ford (2008) refers to as

“emergent design”: the ability for the code’s design to improve as the number of

actions it can perform increases. Wilson (2009) argues that ‘TDD’ should not stand

for Test-Driven Development, but for Test-Driven Design.

Feathers (2004) explains that the work of trying to create tests for every piece of

new functionality forces the developer to design it in a good way. Bain (2008) suggests

that working in a test-driven manner improves the quality of code because it makes

developers think about code from the perspective of the client, which helps inform

decisions made while emerging the design of the code. Small, concrete, modular

units of code are written to perform specific task, and those units are then integrated

together to create the complete program. The purpose of Test-Driven Development

is to end up with code that is better designed than code written without it.

Reading the work of TDD advocates, one comes away with the sense that Test-

Driven Development is a huge industry-changer. In fact, at FutureTest 2008, Robert

Martin said exactly that: “TDD is probably the single most important practice dis-

covered in the last 10 years” (Mullaney, 2008).

If this assessment is correct, software engineers have a professional obligation

to adopt this practice. However, considering how different Test-Driven Development

is from a traditional, code-oriented approach to software development, software en-

gineers have a right to require substantial evidence that TDD improves code quality

before adopting it.

Chapter 3

Existing Research on Test-Driven

Development

Many different groups and individuals have attempted to evaluate the effectiveness of

Test-Driven Development. Each has discovered different aspects about the practice,

where its strengths are, and where its weaknesses are. This work aims to analyze

Test-Driven Development in a somewhat different manner than previous studies, but

there is a great deal of value in knowing what these studies have concluded.

The University of Karlsruhe Study

Müller and Hagner (2002), two researchers at the University of Karlsruhe in Germany,

attempted to conduct a tightly controlled experiment to determine the effectiveness of

Test-Driven Development (referred to by the researchers as test-first programming).

They conducted the experiment with graduate Computer Science students, dividing

the students into two groups: an experimental group that wrote tests first, and a

control group that did not.

The students were given a specific task: implement the bodies of a number of

methods in a graph library (the method declarations were provided). The students

wrote code to try to pass acceptance tests created by the researchers. When they felt

their solutions were adequate, they submitted the code to the testing system, which

then checked if their code behaved correctly or not. If the code did not produce the

desired behavior, the students were given opportunities to fix the code until it passed.

Quantitatively Evaluating Test-Driven Development 11

The researchers kept track of how long it took students to create their solutions, how

often the solutions failed the acceptance tests, and how consistently the students

reused existing methods.

The results of the study were that the two groups showed no difference in

the overall problem-solving time, but the test-first group did produce fewer errors

when reusing an existing method, indicating that the test-first group’s code was more

understandable. Somewhat surprisingly, the test-first group actually had a lower

reliability rating, measured in terms of failing the acceptance test the first time it was

run against the project. In fact, except for three of the programs, all of the programs

written using test-first were less reliable than even the worst program produced by

the control group.

Since the understandability (which relates to code quality) was higher for the

test-first group while the reliability measurement (which relates to software quality)

was lower, this study seems to indicate that Test-Driven Development improves code

quality while decreasing software quality. Unfortunately, it’s difficult to draw solid

conclusions from the study for a variety of reasons.

This study does not specify if the control group wrote their tests after their

implementations, or if they wrote no tests at all. If the control group wrote no tests

at all, the fact that the two groups spent approximately the same amount of time

writing their method implementations is actually an indicator that the test-first group

was faster, since they spent at least some portion of their time writing tests while the

control group did not.

It is also worthwhile to note that the variance for the observed reliability of the

test-first group’s code was higher than that of the control group’s code, indicating

greater differences among student skill levels in the test-first group. Furthermore, the

students had only begun learning about test-first programming a short time before

the experiment, so it’s likely that the test-first students simply struggled more with

test-first programming, perhaps some more than others.

Most critically, the Test-Driven Development group did not strictly adhere to

the Test-Driven Development technique, as the experiment was constructed in a way

to prevent refactoring. Refactoring, as explained in Chapter 2, is one of the key

tenets of improving quality through Test-Driven Development. Because the students

were given the method signatures for their programs, they were unable to apply high

level design refactoring, which is important to the process of improving the structure

Quantitatively Evaluating Test-Driven Development 12

and design of programs. As explained by Fowler et al. (1999), refactoring makes

programs easier to understand, and understanding programs better makes it easier

to find defects. To an extent, it is not surprising that the test-first group of students

did a poor job finding defects, as they were denied one of the most critical tools for

that task.

The Bethel College Study

Another study to determine the effectiveness of Test-Driven Development was done

at Kansas’s Bethel College in 2003. Reid Kaufmann from Sun Microsystems worked

with David Janzen at Bethel College to set up a controlled experiment using college

students in order to isolate the variable of Test-Driven Development as much as

possible. Unlike the previous study, this one tried to focus on the quality of the code

itself (Kaufmann and Janzen, 2003).

The experiment’s participants consisted of two groups with four students each,

one group using TDD, the other not. Every student was at least a sophomore and

all were Computer Science majors with at least two programming courses completed.

The students used Java to develop a game of their group’s choosing. The non-TDD

group chose to write an adventure game, while the TDD group chose an action fighting

game.

The effectiveness of Test-Driven Development was determined by analyzing var-

ious code metrics for snapshots of the code. Snapshots were gathered three times

during the experiment and then run through various code metrics tools.

The results were very interesting. The Test-Driven Development group pro-

duced about 50% more code than the non-TDD group, though the cyclomatic com-

plexity (discussed in more detail on page 34) of both projects was about the same.

Kaufmann and Janzen argue that this is an argument in favor of Test-Driven De-

velopment, as it could be said that the TDD group chose a more complex problem,

which dealt with real-time interaction between two players.

One of the metrics indicated that the non-TDD group’s code contained a class

with more than twice the information flow measure (an indicator of a design problem)

than any other class in either project. Another metric indicated that, as time went

on and the number of functions required of the program increased, the number of

classes decreased with the non-TDD group. In other words, responsibilities per class

Quantitatively Evaluating Test-Driven Development 13

increased with time at a much faster rate in the non-TDD group, indicating a strong

likelihood that the quality of the code was decreasing over time when Test-Driven

Development was not used.

The students filled out surveys when the work was completed, rating how confi-

dent they felt about their code on a scale from 1 to 5. The non-TDD group averaged

a score of 2.5, while the TDD group averaged 4.75. Using the same scale, the TDD

students were asked to rate how much they thought TDD helped with design, and

the final score was 4.25.

Though this study indicates Test-Driven Development helps with both code

design and programmer confidence, it is not without its limitations. Because the two

groups did not work on the same project, it is difficult to compare the outputs of

the two groups. Additionally, the Test-Driven Development group didn’t follow TDD

practices rigorously, only writing 16 total tests for the project. This is likely a side

effect of the students being exposed to the Test-Driven Development methodology for

the first time immediately prior to the experiment.

Kaufmann and Janzen (2003) point out that very few conclusions about TDD

can be drawn from this study because of differences in the sample. The two groups

were very small, and not similar enough. The TDD group had one senior, while the

non-TDD group had none. Furthermore, the average grade for a programming class

that all of the students had taken was higher for the Test-Driven Development group,

indicating that the students who self-selected into the group had more experience

and more seasoned programming skills than the non-TDD group, which may have

impacted the accuracy of the results.

Most importantly, both this study and the University of Karlsruhe Study suffer

from the same limitation: that they were performed in an academic environment

with a group of students. Using students to study Test-Driven Development has

many advantages, not the least of which is how easy it is to perform a controlled

experiment, but doing so limits the ability to draw conclusions about Test-Driven

Development as an engineering practice in the software industry. Students that write

code for an experiment or class project will never have to maintain that code, nor will

anyone else. Industrial software projects spend 75% of their lifetimes in maintenance

mode (Schach, 2006), so software professionals place a great deal of emphasis on

maintainability and understandability. Test-Driven Development is meant to help

improve internal code quality for the purpose of improving the maintainability of

Quantitatively Evaluating Test-Driven Development 14

code, so it is difficult to draw conclusions when testing its efficacy using groups of

students that have no reason to write maintainable code.

To truly measure the effectiveness of Test-Driven Development as a professional

Software Engineering practice, it needs to be analyzed in an industrial, real-world

environment.

The IBM Case Study

A group at IBM had spent over 10 years developing device drivers. This team had

released 7 revisions to their product since 1998, but in 2002 the group switched

to a different platform for development. Laurie Williams and Mladen Vouk from

North Carolina State University’s department of Computer Science worked with E.

Michael Maximilien from IBM to compare the seventh release on the legacy platform

(developed without TDD) against the first release on the new platform (developed

using TDD) to determine the efficacy of Test-Driven Development (Williams et al.,

2003).

The makeup of the group changed significantly between these two projects, but

they were similar enough to draw some conclusions from the study. All engineers in-

volved had at least a bachelor’s degree in Computer Science, Electrical Engineering,

or Computer Engineering. The legacy team consisted of five local full-time employ-

ees with significant experience in both the languages used (Java and C++) as well

as the domain, while the new product team consisted of nine distributed full-time

employees, three of which didn’t know the language used (Java) and seven of which

were unfamiliar with the domain.

The legacy team had developed the product using an “ad-hoc” approach to

testing, often using interactive scripting languages such as Jython to manually exe-

cute class methods. The new product team, however, used Test-Driven Development.

Determining the value of Test-Driven Development relied on the Functional Verifi-

cation Test system in place at IBM, which consisted of a variety of automated and

manual tests to verify the correctness of the product’s functionality and find defects.

After the work was completed, researchers analyzed the number of defects,

test cases, and lines of code for the two teams. When comparing the two teams,

the TDD team’s number of defects found per test case was 1.8 times that of the

legacy team, indicating that the quality of the test cases themselves did a better job

Quantitatively Evaluating Test-Driven Development 15

of finding defects when written as part of a TDD process. More importantly, the

average number of defects found per line of code in the TDD team was 40% less

than that of the legacy team, providing a strong indicator that the TDD team did a

superior job of avoiding introducing defects into the product.

The researchers observed that productivity was about the same for both teams,

and the team generally felt that Test-Driven Development “aided [them] in producing

a product that more easily incorporated later changes,” claiming that support for new

devices was added to the product later “without major perturbations.” Considering

that the new product team lacked the domain knowledge possessed by the legacy

team, Test-Driven Development seemed to provide a great benefit to the IBM team.

This study, though illuminating, would benefit from some additional study. The

metrics used to analyze the efficacy of Test-Driven Development, based primarily in

defect density, focused more on external quality than on internal quality. Further-

more, since the legacy team’s tests consisted of many manual and “ad-hoc” tests,

this study really illustrates that automated testing is effective at reducing defects, not

necessarily Test-Driven Development. Though TDD generates automated regression

tests as a byproduct of its process, it’s possible that the defect density reduction ob-

served in the study was due more to the presence of automated regression tests than

to the adherence to Test-Driven Development.

The Microsoft Case Studies

In 2006, two researchers from Microsoft, Thirumalesh Bhat and Nachiappan Na-

gappan, attempted to evaluate the effectiveness of Test-Driven Development in a

corporate, professional environment. They observed two different teams at Microsoft

as they tried TDD and analyzed the effect TDD had on, primarily, defect reduction

(Bhat and Nagappan, 2006).

Bhat and Nagappan analyzed two case studies as part of their research. They

picked two projects at Microsoft, one that was part of Windows and one that was part

of MSN. The two teams tried TDD for a short period of time and the two researchers

looked at the bug tracking system to determine if TDD helped reduce the number

of defects that were found in the code. They also kept track of how long it took the

engineers to complete their work. For each of these projects, Bhat and Nagappan

found a similar project of similar size and used the same bug tracking system to

Quantitatively Evaluating Test-Driven Development 16

determine how many defects were found at the completion of that effort. The two

projects were then compared.

In the first case study, which dealt with code that was part of the Windows

operating system, the “experimental” group was a team consisting of 6 developers

writing 6,000 lines of code over a period of 24 man-months using TDD. They were

compared to another Windows project in which 2 developers wrote 4,500 lines of code

in 12 man-months without using TDD. In the second case study, which dealt with

code that was part of the Microsoft Network, a team of 5-8 developers writing 26,000

lines of code over 46 man-months using TDD was compared to a Microsoft Network

team consisting of 12 developers writing 149,000 lines of code over 144 man-months

without TDD.

The Microsoft researchers found substantial improvement in quality when Test-

Driven Development was used. In the first case study, the non-TDD group produced

2.6 times as many defects as the TDD group. In the second case study, the non-TDD

group produced 4.2 times as many defects. The managers of the groups also provided

estimates for how much adopting TDD slowed the teams down. In the first case

study, the manager estimated that the TDD group took 25-35% longer because of

TDD, while the manager from the second case study estimated 15%.

These studies provide a strong argument in favor of Test-Driven Development

being helpful in improving external quality despite causing development time to in-

crease, but any conclusions that can be drawn from the study are limited to external

quality since only defect reductions were measured. Since Test-Driven Development

is meant to improve code quality, the code itself must be measured.

The Janzen Study

Though the vast majority of prior work studying the effectiveness of Test-Driven

Development focuses on external quality by using bugs or failed test cases for analysis,

a work by Janzen (2006) provides a noteworthy exception.

Janzen’s doctoral thesis discusses a number of experiments done in both aca-

demic and industrial settings, where experimental and control groups have had their

code analyzed using various internal quality metrics, many of which are covered in

Chapter 4. The studies offer a number of valuable insights into the effectiveness of

Test-Driven Development with regard to improving code quality.

Quantitatively Evaluating Test-Driven Development 17

Of particular interest are the four industrial experiments, all of which were

performed with the same Fortune 500 company. The first of the experiments was

done as part of a training seminar on the practice of Test-Driven Development as

well as the usage of popular Java-based libraries Spring and Hibernate. The trainees

were randomly selected into two groups, one that implemented a bowling game scoring

system using Test-Driven Development, and the other that implemented it by writing

the code before the tests.

The remaining three experiments were conducted with the developers in their

regular work environment, working on production code. The first had the developers

forego writing any automated tests to write the code, which was then analyzed using

various code metrics tools. Then the developers underwent Test-Driven Development

training before using TDD to write the code for the next phase of the experiment, after

which the code was analyzed using the same tools. The second industrial experiment

worked almost exactly as the first, but required that the developers in the non-TDD

group write tests after completing the code. The third and final industrial experiment

simply reversed the order, having developers first try TDD, then switch to writing

the tests after the code.

The studies showed that, for the most part, Test-Driven Development helped

decrease code complexity among mature developers (the industrial studies), but sub-

stantially increased it among beginning developers (the academic studies). The study

also found that many metrics showed improvement in the test-last group after the

developers had switched to a test-last style after doing Test-Driven Development first.

Janzen explains that this may show that TDD had a “residual” effect on developers,

even when they were not using it.

A number of aspects of Janzen’s work call for additional research. First and

foremost, his metrics analysis includes the test code itself. This unfairly penalizes

Test-Driven Development code, since Test-Driven Development code tends to have

more tests, and tests are coupled to the classes they are testing. Since tests are not,

themselves, designed with Test-Driven Development, it seems inaccurate to include

them in metrics analysis.

Most importantly, these studies were a few steps removed from real-world in-

dustrial usage of Test-Driven Development. The industrial studies were conducted as

a controlled experiment in which the programmers were told that their code would

be analyzed. By making the developers aware of the fact that their code would be

Quantitatively Evaluating Test-Driven Development 18

analyzed for internal quality using metrics tools, the experiment may have tainted

the results.

Summary

These studies (as well as many more not covered here) generally tell the same story:

Test-Driven Development helps seasoned developers improve the quality of their soft-

ware. Unfortunately, very few of these studies provide a strong indication that Test-

Driven Development helps improve the quality of code. Many of these studies evaluate

quality in terms of defects found in the system when work is complete, a measurement

that stresses the external quality of software rather than the internal quality of code.

Many of these studies were done in an academic setting or in an experimental

group setting. Though the findings from these studies are extremely valuable, the

situations are a bit removed from a real-world industry setting. Students are more

junior than seasoned professionals in the industry, and the effectiveness of Test-Driven

Development may be different when exercised by professionals. To truly determine

how effective Test-Driven Development is at aiding in the production of high-quality

source code, it must be analyzed in a natural, industrial setting. Additionally, it must

be analyzed in a manner in which the developers writing the code are not aware of

the fact that their code will be analyzed for internal quality while writing it.

This work has attempted to improve upon previous studies in two specific ways.

First, to determine the effect of Test-Driven Development on internal quality, object-

oriented metrics have been used (detailed in Chapter 4). Second, the analysis has

been performed on real-world code by obtaining a sample of Open Source projects

(discussed in Chapter 5). By using code quality metrics, this work has attempted

to evaluate Test-Driven Development as a Software Engineering practice with the

purpose of improving code rather than software. By looking at real-world Open Source

code, this work has attempted to determine Test-Driven Development’s effectiveness

in a professional, industrial setting. Since the Open Source developers were unaware

of the fact that their code would be analyzed for internal quality while writing it,

observer effect bias has been avoided.

Chapter 4

Measuring Code Quality

There are many ways to measure the quality of software. Jones (2008) describes

a number of metrics that can be used to measure the quality of software and the

productivity of developers. It details how to calculate how much money each line of

code costs a business, how to measure “requirements creep” during the requirements

phase of software development, and how to measure the effectiveness of integrating

outsourced code, among many other things. Moller (1992) describes methods for

measuring software quality by monitoring system uptime and evaluating the level of

user satisfaction. Pandian (2003) describes in great detail various ways to measure

the quality of software by looking at defects, lines of code, and time. While these

metrics are valuable for helping improve the quality of products that engineers create,

they do not help improve the quality of code.

Henney (2004) describes the difference between software and code by essentially

saying that software is what users see and code is what programmers see. Though

it is common for poor-quality code to yield poor-quality software, it is possible for

high-quality code to yield software the users cannot use, and it is also possible for

software that users adore to have been cobbled together from a difficult-to-maintain

mess of code.

Bad quality code often leads to slipped deadlines and defects, but it’s not un-

heard of for developers to make deadlines and fix defects in spite of frustratingly bad

code. If there is value in looking at the quality of code, the best mechanism for doing

so may well not be measuring the quality of software.

There are a number of ways to measure the quality of code, most notably object-

oriented metrics. These metrics can measure the primary indicators of bad code: low

Quantitatively Evaluating Test-Driven Development 20

cohesion, high coupling, and high complexity.

Cohesion

One thing that makes code “bad” is a low level of cohesion. McLaughlin et al. (2006)

define cohesion as the degree to which the elements of a module are connected. In

object-oriented programming, a class whose lines of code are all closely related is said

to have a high cohesion, whereas a class whose lines of code are barely related is said

to have a low cohesion.

A module has coincidental cohesion when the parts of a module are grouped

randomly, with little or no relation between them. A simple example of a module with

coincidental cohesion is a utility class full of random commonly-used static methods.

At the other end of the cohesion spectrum is functional cohesion. Functional

cohesion is achieved when all of the code in a module works together to support

a single task. A well designed object with a single, understandable purpose has

functional cohesion. It illustrates the quintessential “does one thing and does it well”

design paradigm.

When cohesion is low, as in coincidental cohesion, it is very difficult for people to

understand the code in a module, since much of it is unrelated. Furthermore, when

cohesion is very low, functionally related changes will require changes to multiple

modules rather than just one. Low cohesion also makes it difficult to reuse modules,

because using a module with a low level of cohesion very often involves pulling in

a undesirable set of functions. Schach (2006) explains that high cohesion is good

because it is easier to maintain and it isolates faults to one module.

Cohesion is essentially a measure of organization - it measures how related all

of the responsibilities of a module are. Freeman et al. (2004) define cohesion as “how

closely a class or a module supports a single purpose or responsibility.”

When programmers complain that the feature they wish to add requires chang-

ing dozens of modules, or that they can’t understand what an object is doing because

it’s doing dozens of different things, they are experiencing low cohesion.

There are a handful of code metrics that allow developers to measure the degree

of cohesion in their software systems.

Quantitatively Evaluating Test-Driven Development 21

Lack of Cohesion Methods

One popular method for measuring the level of cohesion is by determining the “Lack

of Cohesion Methods” (LCOM), proposed by Chidamber and Kemerer (1991). The

theory behind this measurement is simple. A maximally cohesive class should have

every single instance variable used by every single method defined in the class. A class

where one of the variables isn’t used by one of the methods is slightly less cohesive

than a class where all of the variables are used by all of the methods.

With that in mind, Chidamber and Kemerer proposed that you could take the

number of disjoint sets formed by intersecting the sets created by taking all of the

instance variables used by each of the methods in the class. In other words, one can

analyze how often there are methods that don’t use the same set of instance variables

as other methods. Henderson-Sellers (1995) revised this method to normalize it so

that classes with similar values for LCOM could be said to have similar levels of

cohesion.

The formal specification for this metric is, given a set of methods {Mi}(i =

1, . . . ,m) which access a set of attributes {Aj}(j = 1, . . . , a), let the number of

methods which access each piece of data be µ(Aj) and define the Lack of Cohesion

Methods as follows:

LCOM =

(
1
a

a∑
j=1

µ(Aj)

)
−m

1−m

Under this formula, a perfectly cohesive class (one in which every method ac-

cesses every attribute), should have an LCOM of 0. On the other hand, a completely

noncohesive class (one in which each method uniquely accesses exactly one attribute)

would have an LCOM of 1. It should be reiterated that the Henderson-Sellers (1995)

method for calculating LCOM provides a ranking between 0 and 1, not the actual

number of non-cohesive methods as the name may imply.

LCOM can be understood more easily using simple code examples.

public class Rectangle { // LCOM: 0

private double width;

private double height;

public Rectangle(double width, double height) {

super();

this.width = width;

Quantitatively Evaluating Test-Driven Development 22

this.height = height;

}

public double getArea() {

return this.width * this.height;

}

public double getPerimeter() {

return this.width * 2 + this.height * 2;

}

}

The Rectangle class contains two attributes (width and height) and two meth-

ods (getArea and getPerimeter) Both of the methods use both of the attributes,

and as a result LCOM = 0.

public class Circle { // LCOM: 0.333

private double x;

private double y;

private double radius;

public Circle(double x, double y, double radius) {

this.x = x;

this.y = y;

this.radius = radius;

}

public double getArea() {

return Math.PI * this.radius * this.radius;

}

public boolean contains(double x, double y) {

double distance = Math.sqrt(

(x - this.x) * (x - this.x) +

(y - this.y) * (y - this.y));

return distance <= this.radius;

}

}

The Circle class, on the other hand, contains three attributes (x, y, and ra-

dius) and two methods (getArea and contains). The contains method uses all

three of the attributes, but getArea only uses one. As a result, it has a higher

measurement for LCOM , 0.333.

This measurement illustrates a genuine cohesion problem with the design of the

Circle class. The Circle class has two disparate responsibilities: maintaining the

state of the circle itself (radius), and maintaining the state for that circle’s placement

Quantitatively Evaluating Test-Driven Development 23

on a 2D plane (x and y). If someone wished to reuse the Circle class for a purpose

that did not require drawing it on any sort of plane, it would be somewhat difficult,

as the Circle class is bound to the notion of graphing. The Rectangle class, on the

other hand, is completely reusable for any aspect of an application that requires the

notion of a rectangle.

This deficiency in the reusability of Circle is accurately reflected by the sig-

nificantly higher value for LCOM .

Specialization Index

Object-oriented systems enable classes to use polymorphism: the ability to treat an

object as though it is another object, as long as they share an interface. Polymorphism

is a very powerful tool, but developers can overuse and abuse it when programming.

Cavaness et al. (2000) argue that class hierarchies can become rigid when polymorphic

principles are taken to the extreme.

One common abuse is for programmers to create inheritance relationships be-

tween classes even though the subclasses don’t naturally share a type. This is often

done for convenience: a parent class has many methods that a new class wants, so it

is declared to extend the parent, even when it isn’t truly appropriate. Good programs

follow what Martin and Martin (2006) call the “Liskov Substitution Principle,” which

means that subtypes are easily substitutable for their base types. When this principle

is violated, it means that a relationship between classes has been created that isn’t a

natural one, often simply to reuse small pieces of code such as methods or variables

within subtypes. This is an indicator of low cohesion.

It is possible, somewhat indirectly, to measure how well the Liskov principle is

being followed. When relationships exist between classes that are unnatural, there

is often a need for subtypes to not only extend their parent types, but to override

portions of the parent’s code. When a subtype overrides many methods on a base

type, it means that the base type’s behavior isn’t truly appropriate. This can be

measured using the “Specialization Index.”

The Specialization Index (SI), proposed by Lorenz and Kidd (1994), can be

used to determine how effectively subclasses add new behavior while utilizing existing

behavior. This helps determine the quality of the subclassing and the level of cohesion

within subclasses. The formula for the Specialization Index (SI) given the Depth of

Inheritance Tree (DIT), Number of Overridden Methods (NORM) and Number of

Quantitatively Evaluating Test-Driven Development 24

Methods (NOM) is defined as:

SI =
DIT ×NORM

NOM

A high Specialization Index indicates that a subclass overrides a very large

number of its inherited methods. Schroeder (1999) explains that this indicates the

abstraction is inappropriate because the child and its ancestors do not have enough in

common to warrant inheritance. This means that the grouping within the inheritance

tree was less about correctly designing relationships, and more about sharing a few

method implementations, which is an indicator of high coincidental cohesion, the

worst kind.

Figure 4.1 illustrates how the SI metric measures cohesion problems within an

inheritance hierarchy.

Figure 4.1: SI Illustration

The Bird class defines two behaviors common to all birds: fly andlayEggs.

The Woodpecker class is a kind of Bird, and it inherits all of Bird’s methods and

adds a new one, peckWood. Because it uses the behaviors on its parent and overrides

no methods, it has a Specialization Index of 0.

Penguin, like Woodpecker, adds a new behavior (swim), but since penguins can-

not fly, it must override the default implementation of fly on Bird. Penguin’s depth

(DIT) is two and it contains two methods (NOM), one of which is an overridden

method (NORM). Thus the SI formula yields (2× 1)÷ 2 = 1.

The higher Specialization Index for Penguin points to the existence of a cohesion

problem with the design of the relationships. Birds can fly, so Penguin shouldn’t

really be a type of Bird. This problem could be solved by creating a FlyingBird

subclass of Bird, or introducing a Flying interface that only Woodpecker implements.

Quantitatively Evaluating Test-Driven Development 25

Number of Method Parameters

Martin (2008) explains that functions which need many arguments (he suggests no

more than three) are good indicators that some code needs to be wrapped into its

own class. Method arguments represent information to which the method does not

have access. Ideally, objects only require data internal to themselves, indicating a

high level of cohesion. When methods require access to data that they do not “own”,

it indicates that the boundaries that have been drawn between objects are poor.

A method that requires three external values to be passed in as parameters is

very much like a method that uses three internal variables that no other method uses,

which would result in a high LCOM measurement (discussed on page 21). An object

with a method that takes many parameters requires more information than the object

contains, which means it has low encapsulation and, as a result, low cohesion.

The Number of Method Parameters (PAR) can be counted simply by looking

at the number of parameters each method takes. Many languages, including Java,

are capable of supporting “varargs” style arguments in which the final argument can

be an array of arguments that share a type. Because varargs arguments must be

the same type, they are essentially a single parameter: a typed array. Martin (2008)

makes the same point: if the variable arguments are treated the same (as they usually

are), they can be treated as a single argument for the purposes of metrics gathering.

Number of Static Methods

Static methods are methods that belong to a class but do not require an instance of

that class to invoke them. All data the method requires for completion are passed

into it. This points to a disconnect between the data used by a class responsibility

(the parameters) and the implementation of that responsibility (the method itself).

In other words, why does the method belong to the class if the data it uses do not?

Static methods indicate that the boundaries of encapsulation are incorrectly

placed, and as such they indicate a low level of cohesion. A static method that

operates on data really belongs in the class that has that data to begin with. The

only real reason to make that method static is if, for example, Class A and Class

B both require the same method but can in no way be part of the same inheritance

hierarchy. This indicates that a responsibility has been split into two (or more) places

which means that cohesion is low.

Another way of thinking about static methods is in terms of where those meth-

Quantitatively Evaluating Test-Driven Development 26

ods truly belong. For example, Java contains a class called Math which contains a

number of static methods, one of which is abs. This allows a programmer to get the

absolute value of a number by calling Math.abs(-5). But really, the responsibility

of taking the absolute value of a number should belong to the number itself, since

that number contains all of the relevant data to perform the task. Hevery (2008)

argues it would be better to write -5.abs(), but of course Java does not allow this.

Because of this limitation, one of the true responsibilities of the Number class is found

in Math, decreasing the overall cohesion of Number. Math suffers from an obvious

lack of cohesion, containing functions relating to Algebra (abs, sqrt, pow, log, etc),

Trigonometry (sin, cos, tan, etc), and Statistics (random, max, min) all lumped to-

gether in a single class (Sun Microsystems, 2009). Static methods are a good indicator

that class responsibilities are in the wrong place.

The Number of Static Methods (NSM) can be counted in a straightforward

way, simply counting the number of methods on a class that are declared static.

Coupling

Another contributor to bad code is a high degree of coupling. Page-Jones (1999)

defines coupling as the degree to which different modules depend on each other. In

object-oriented programming, if a class x contains a variable of type y, or calls services

on y, or references y as a parameter or a return type, or is a subclass of y, then x

is coupled to‘ y. Coupling, in and of itself, does not constitute bad code; in a well-

designed system, modules are going to have to interact with other modules. Problems

arise based on the type of coupling that is used.

A module has content coupling when one module modifies or relies on the in-

ternal workings of another module. Changing one module requires changing another

module.

In contrast, when a module uses message coupling, modules are not dependent

on each other even when they use each other. Modules communicate by exchanging

messages via a public interface. One module can be changed without affecting any

other modules as long as the interfaces remain the same.

In between these two opposites are, from worst to best, common coupling, exter-

nal coupling, control coupling, data-structured coupling, and data coupling. Message

coupling is considered low, or “loose” coupling, while content coupling is considered

high, or “tight” coupling (Schach, 2006).

Quantitatively Evaluating Test-Driven Development 27

Tight coupling leads to cascading changes. When the engineer changes one

module, she is required to change other modules as well (which can also lead to

highly inaccurate time estimates for how long work will take). Modules are extremely

difficult to understand by looking at them alone, and engineers may have to follow a

chain of modules to figure out what’s happening. Modules are also difficult to reuse,

because they require the undesirable usage of their dependent modules.

When developers complain about having to open dozens of files to support a

change in a specific module, or they lament having to construct instances of many

classes in order to use a specific one, they are experiencing tight coupling.

As with cohesion, a number of metrics have been developed in the software

industry to measure coupling between modules in modern object-oriented systems.

Afferent and Efferent Coupling

Martin (1994) proposed many metrics for keeping track of the coupling between mod-

ules in a system. The simplest two of these are Afferent Coupling and Efferent Cou-

pling.

The Afferent Coupling (Ca) for a package is defined as the number of classes

outside of that package that depend on classes within it. The Efferent Coupling (Ce)

for a package is defined as the number of classes outside of the package that are

depended upon by classes within it.

Quantitatively Evaluating Test-Driven Development 28

Package A Package B

Package C

Package D

q

t

r

u

s

v

Figure 4.2: Coupling Example

The simple package diagram in Figure 4.2, adapted from work by Martin (2002),

provides an example of coupling. Because of the various class dependencies, Package

A and Package B both depend on Package C, which in turn depends on Package D.

There are three classes that depend on Package C (q, r, and s), so the Ca for Package

C is 3. There is one class that Package C depends on (v), so the Ce for Package C is

1.

These two metrics are valuable in determining the level of coupling within a

class or package, but they are most useful as part of a greater calculation.

Distance from The Main Sequence

Martin (2002) describes the stability of a package as the “amount of work required

to make a change.” In other words, if one package is depended upon by three other

packages but depends on none itself, it has three solid reasons not to change it, but

it also has no reason to change since it depends on nothing else. Martin (2002) calls

this situation stable.

On the other hand, if there were a package which depends on three other pack-

ages but has no packages depending on it, it lacks responsibility but has three reasons

to change. This is called instable.

Quantitatively Evaluating Test-Driven Development 29

Thus, the instability of a package (I) can be determined according to the fol-

lowing formula:

I =
Ce

Ca + Ce

In the coupling example from Figure 4.2, with Ca = 3 and Ce = 1, the Instability

I = 1
4
.

When I = 1, no packages depend on the package in question, but the package

itself does depend on others. This is a highly “instable” situation. This is referred

to as instable because, over time, this package will likely change a great deal. It

lacks dependents, so there are very few barriers to changing it. Additionally, it has

dependencies, which means it is quite likely to have to change as its dependencies do.

The combination of being relatively easy to change and having a substantial need to

do so makes the package instable.

When I = 0, a package is greatly depended upon by others, but has no de-

pendencies of its own. This is referred to as “stable” because it is unlikely that the

package will have many changes over time. Because the package is depended upon

by others, changing it is very difficult. However, because the package does not have

any dependencies itself, there are very few reasons for the package to have to change

in the first place. Since the package cannot change easily but has little need to, the

package is stable.

There is nothing inherently bad about either stable or instable packages, pro-

vided they meet a specific criterion according to Martin (1994): that they are as

abstract as they are stable.

In other words, if a package is stable (many packages depend on it but it depends

on few), it should be abstract so that it can be easily extended. At the same time, if

a package is instable (few packages depend on it but it depends on many), it should

be concrete since its instability makes it easy to change. The net effect of this is that

packages that are difficult to change are easy to extend without changing.

Martin (2002) proposes a metric to measure the Abstractness of a package (A)

by looking at the total number of classes in a package (Nc) and the number of abstract

classes or interfaces (Na) in the package. The formula for this metric is as follows:

A =
Na

Nc

A value of 0 for this formula indicates that a package has no abstract classes at

all, while a value of 1 indicates that it contains nothing but abstract classes.

Quantitatively Evaluating Test-Driven Development 30

Since both A and I are fractional values between 0 and 1, and since the rule of

thumb is that a package should be as abstract as it is stable, it means that a package

is ideal when it’s value for I is inversely proportional to its value for A. A package

is an ideal state when it has A = 1 and I = 0 or when it has A = 0 and I = 1. A

package could still be considered ideal if it has A = 0.8 and I = 0.2 as well.

It is therefore possible to construct a graph with A on one axis and I on the

other, with all possible “ideal” points represented by the line segment between (A =

0, I = 1) and (A = 1, I = 0). Martin (2002) calls this “The Main Sequence”.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
b
s
tr

a
c
tn

e
s
s
 (

A
)

Instability (I)

The Main Sequence

Figure 4.3: The Main Sequence

The Main Sequence, as illustrated in figure 4.3, represents the ideal place for

a package to be, in terms of its abstractness and instability. Therefore, the further

away from a point on the Main Sequence a package is, the worse it is from a coupling

standpoint.

The distance from the Main Sequence, D, and it’s normalized version, D′ (which

simply leaves the distance in a range from 0 to 1) can be calculated as follows:

Quantitatively Evaluating Test-Driven Development 31

D =
|A+ I − 1|√

2
D′ = |A+ I − 1|

A value of 0 for D′ indicates that a package is directly on the main sequence,

while a value of 1 indicates it is as far away as possible.

Depth of Inheritance Tree

When a class implementation extends another class implementation, the correctness

of the former is tied to the latter. Bloch (2008) argues that inheritance violates

encapsulation because it exposes the implementation of a parent class to the child

class, and strongly advises that programmers favor composition over inheritance.

Kegel and Steimann (2008) refer to inheritance as a “curse because it establishes a

strong coupling between classes.”

Inheritance is an indicator of high coupling, and it can be measured by sim-

ply looking at any given class and counting the number of classes as one traverses

up the inheritance tree until one finds a generic parent class (in the case of Java,

java.lang.Object is the ancestor of all objects). This metric is called Depth of

Inheritance Tree (DIT)

Figure 4.4 shows an example inheritance tree. The depth of the inheritance tree

for class HouseCat is 4, as it requires 4 jumps to get back to Object.

Quantitatively Evaluating Test-Driven Development 32

java.lang.Object

Animal

Mammal

Cat Dog

HouseCat

Figure 4.4: An Example Inheritance Tree

Traditionally, the DIT metric uses the maximum path length in instances of

multiple inheritance. Since we will be working exclusively with Java projects and

Java prohibits multiple implementation inheritance, the simple definition of DIT will

suffice.

Complexity

Finally, one of the most predominant reasons for a developer to consider code bad

is code complexity. Code complexity is, according to Schach (2006), “the amount of

effort needed to understand and modify the code correctly.” Code complexity does

not refer to the relationships between modules like coupling, nor elements within

modules like cohesion, both of which fall under the category of design complexity. If

a function has nested if statements seven levels deep, each one with its own else

clause, it is extremely difficult for the developer to ascertain what the function does;

its code is complex according to Marco (1997).

Many things can contribute to the complexity of a module or class. Code can

be made unbearably complex by having too many lines of code in a single method,

or even having too many lines of code in the module itself, requiring the maintaining

programmers to scroll up and down between various parts of the file to ascertain what

is happening. Basili et al. (1995) validate the common wisdom that longer methods

and longer classes are closely correlated with higher defect rates.

Quantitatively Evaluating Test-Driven Development 33

Code can be made complex by having poor commenting, or misleading com-

menting. It can be complex because it contains too many branching statements

such as if statements or switch statements, or even too many nested loops. Char-

ney (2005) argues that code is complex when variable names are too short or non-

descriptive, because it’s difficult for engineers to remember what purpose a variable

serves when it is encountered in the code without good names. If expressions contain

too many nested parentheses or functions take too many arguments, it is difficult for

developers understand or change them according to Martin (2008).

Code that is “clever” also tends to be complex. According to Kernighan and

Plauger (1978), “everyone knows that debugging is twice as hard as writing a program

in the first place. So if you’re as clever as you can be when you write it, how will you

ever debug it?” This is a simple but powerful argument against writing code that

tests the skills of the developers writing it.

Complex code is difficult to understand, difficult to modify, and extraordinarily

difficult to test according to Glover (2006). Furthermore, as argued by Shore and

Warden (2007), code that is difficult to test often lacks automated tests, which makes

it difficult to refactor the code with confidence.

When developers express frustration at a module they can’t understand or

lament how large a source code file is, or when testers have trouble figuring out

how to test all of the possible execution paths through code, they are dealing with

code complexity. Even if a program consisted of a single class (which therefore has

no coupling problems) with a single responsibility (which therefore has no cohesion

problems), that program can still be extremely difficult to read, understand, and

maintain. Such a program suffers from high complexity.

Complexity is a bit more vague than cohesion and coupling, so naturally it is

somewhat more difficult to measure. Nonetheless, there are some imperfect metrics

available that help determine if a project suffers from high complexity.

Size of Methods and Classes

A number of indicators of problematic code are listed by Fowler et al. (1999). These

indicators are called “code smells.” The second code smell mentioned, preceded

only by “Duplicate Code,” is “Long Method.” The third is “Large Class.” Clearly,

software professionals feel that the sizes of methods and classes has an impact on the

quality of code.

Quantitatively Evaluating Test-Driven Development 34

Longer methods and classes are more difficult to understand and more prone to

defects. A 2002 study conducted by El Emam et al. (2002) indicate that shorter code

is, in general, desirable for reducing the number of defects in a system. Kerievsky

(2004) favors methods around 10 lines of code or less and makes a case that breaking

long methods into a series of short methods will often lead to a higher level of reuse.

As argued by Fowler et al. (1999), methods and classes should be so short that new

programmers should feel as though “no computation ever takes place, that object

programs are endless sequences of delegation.”

Measuring methods and classes is a relatively straightforward process, since the

number of lines in code can be easily measured. However, comments and white-space

help make code clearer, so they shouldn’t be counted in size-based metrics.

The size of a section of code can be determined simply by counting the number

of non-blank, non-comment lines of source code in the section. It is important for this

metric to ignore blank lines and comments, because simple differences in formatting

taste could lead to widely varying measurements for the metric.

A common metric, Total Lines of Code, should not be used as a measure of code

complexity, as it is not so much an estimate of code complexity as it is of software

complexity (software with more features tends to have more code than software with

fewer features). Another common metric, number of methods per class, should not be

used as an estimate of code complexity because many professionals, including Martin

(2008), argue that multiple small methods actually make code easier to understand

than a small number of long methods.

McCabe Cyclomatic Complexity

The more if, else, for, and while statements within a code block, the more complex

it is. More decision-making code means more possible paths through the code. The

greater the number of possible paths, the more difficult it is for engineers to fully

understand the flow of the code, and the harder it is to modify.

McCabe (1976) proposed one of the earliest software metrics for measuring this

exact type of problem. Today it is referred to as McCabe Cyclomatic Complexity. The

Cyclomatic Complexity of a block of code is essentially the number of possible paths

through that code. A block with no loops or conditionals has a McCabe Cyclomatic

Complexity of 1, due to the fact that no decisions are made. A block of code with

exactly one if statement has one decision to make in the code, and has a higher

Quantitatively Evaluating Test-Driven Development 35

Cyclomatic Complexity.

A method’s McCabe Cyclomatic Complexity (MCC) isn’t quite the same as the

number of actual paths through the method, it is the number of linearly independent

paths. MCC is the number of decision points plus 1, and it is meant to represent

the smallest set of paths which can be combined together to create all possible paths

through the code (Ponczak and Miller, 2007).

Formally, the McCabe Cyclomatic Complexity of a block of code proposes the

existence of a directed graph in which every statement is represented as a node, and

every opportunity for control flow to pass from one statement to another is represented

as an edge. If E is the number of edges, N is the number of nodes, and P is the number

of independent subgraphs, the McCabe Cyclomatic Complexity MCC is defined as:

MCC = E −N + P

When looking at the McCabe Cyclomatic Complexity of methods, there are no

disconnected subgraphs, and P is always 1 in this case.

The following code example is simple enough to easily determine its McCabe

Cyclomatic Complexity:

public class McCabe {

private Bar bar;

public void performWork(boolean a, boolean b) {

if (a) {

bar.baz();

} else {

bar.quux();

}

if (b) {

bar.corge();

} else {

bar.grault();

}

}

}

The graph for this code is in Figure 4.5. In the graph, there are 8 nodes and 10

edges, and the graph is fully connected (there are no disconnected subgraphs). Thus

the McCabe Cyclomatic Complexity formula yields 10 − 8 + 1 = 3. This method is

more complex and difficult to understand than a method with a McCabe Cyclomatic

Quantitatively Evaluating Test-Driven Development 36

Complexity of 1, but less difficult to understand than a method with a complexity of

5.

The McCabe Cyclomatic Complexity metric is extremely useful in judging the

relative structural complexity of methods and other code blocks, which is why it

remains one of the most popular software metrics used today.

Start

if(a)

Bar.baz() Bar.quux()

if(b)

Bar.corge() Bar.grault()

Exit

Figure 4.5: Example Program Stucture Graph

Nested Block Depth

Most programming languages place no restriction on how many levels of indentation

you may apply to your code. While this allows for a great deal of flexibility for

engineers, it can also lead to headaches. The more levels of indentation present in a

module, the more difficult it is to read and understand. Rodger (2005) points out that

there is an intrinsic relationship between indentation levels and concretely grouped

areas of logic. It follows that, the deeper code is indented, the more logical rules

apply to it, which makes it that much harder for engineers to understand.

In the following code, the number of logical evaluations the engineer must per-

form to comprehend the code is extremely high:

public void complexProcedure(boolean[] conditions) {

Quantitatively Evaluating Test-Driven Development 37

if (conditions[0]) {

if (conditions[1] && conditions[2]) {

if (conditions[3] || !conditions[4]) {

doSomething();

} else {

doSomethingElse();

}

} else {

if (!conditions[6]) {

doManyThings();

} else {

doManyOtherThings();

}

}

} else if (conditions[5]) {

doAnotherThing();

} else {

if (conditions[7] && conditions[8] && !conditions[9]) {

doNothing();

}

}

}

One indicator that this code is complex is the sheer number of levels of indenta-

tion that the method contains. There is a metric for measuring this problem, known

as Nested Block Depth (NBD).

The Nested Block Depth metric measures the level of indentation in code. In

the example, the maximum level of indentation (counting only the lines that perform

actual work, so as not to allow code formatting differences to skew the metric) is 4,

so NBD = 4.

Nested Block Depth helps determine if a function or method is too complex,

because highly nested functions are unlikely to be doing only one thing, a tenet

of well-designed functions according to McConnell (2004). For a to be doing only

one thing, blocks within if, else, and while statements should only contain a few

lines, ideally one that’s simply another function call. Furthermore, functions should

not even be long enough to support deeply nested structures. According to Martin

(2008), the indentation level inside a function should not exceed two.

Chapter 5

Description of Experiment

This work used the metrics outlined in Chapter 4 as a measurement of code quality.

Though these metrics are not a perfect way to determine the quality of code, the bene-

fit of using them is that they are objective. Metrics are based in simple measurements

of source code - applying metrics to the same code base twice will yield identical re-

sults, whereas other potential measurements of code quality are more subjective and

may not have such consistent and concrete results.

This work created two code samples - code that was written using Test-Driven

Development (the experimental group) and code that was written without it (the

control group). To obtain large enough samples of industrial, real-world code, Open

Source projects were used.

Surveys were sent out to the developer mailing lists for dozens of Open Source

projects. The projects were written in the same language (Java) to prevent language

differences from influencing the measurements. The surveys helped determine which

projects were written using TDD and which were not, which allowed for the creation

of the two groups.

Measurements were then taken using Eclipse Metrics, detailed on page 45.

Survey Setup

The survey was created using Google Docs with the Spreadsheet/Form editor. The

URL to the survey was sent to the developer mailing lists for a number of different

open source projects, and the results were automatically entered into a spreadsheet.

If the project was too small to have a mailing list, the URL was sent directly to the

Quantitatively Evaluating Test-Driven Development 39

owner and maintainer of the project.

The goal of the survey was to determine, for each participant, what project they

work on, if they are a committer (people who have direct write access to the source

code repository) or contributor (people who have submitted patches for a project),

and how often they use Test-Driven Development on a scale from one to five. The

survey also contained optional fields for the participant’s name and a comment box

where participants could leave additional information.

The exact text of the survey is contained in Figure 5.1

The projects that were invited to participate in the survey were Blojsam,

Pebble, JSPWiki, FitNesse, XWiki, JAMWiki, Platypus Wiki, Jalopy, BeautyJ,

JxBeauty, Commons Collections, Commons Primitives, Commons CLI, Commons

Math, Java HTML Parser, JTidy, NekoHTML, and Jericho HTML. These projects

were selected on the grounds that they were relatively simple (and therefore easy to

compile) and somewhat related in scope: they are code formatters, parsers, wikis,

blogs, and utility libraries.

The survey was also sent out to various general open source community forums

and Test-Driven Development mailing lists.

Survey Results

Table 5.1 contains the results of the survey. This includes all survey results, including

results for projects that were not specifically requested.

As promised in the survey, all names have been removed.

Table 5.1: Survey Results

Project Participant TDD Usage Rating

ActiceREST Committer 1

NUnit Contributor 5

NBehave Committer 5

FitLibrary Committer 5

FubuMVC Committer 5

Hudson Committer 5

Allelogram Committer 4

FitNesse Committer 5

Quantitatively Evaluating Test-Driven Development 40

WebDriver Contributor 5

KQ Lives Contributor 1

JUnit Committer 5

addendum php annotations Committer 5

Inka Committer 5

DAOTools Committer 5

Plash Committer 4

Amarok Contributor 1

Arch Linux Contributor 5

pythinsearch Contributor 1

newsbeuter Committer 3

jxta-jxse Committer 3

Apache JDO Committer 5

blojsom Contributor 4

Roller, SocialSite, ROME Committer 4

blojsom Committer 2

JSPWiki Contributor 1

Apache JSPWiki Committer 2

JSPWiki Committer 1

JSPWiki Committer 1

JAMWiki Committer 1

XWiki Committer 2

XWiki Committer 2

XEclipse Committer 2

XWiki Committer 2

unpaper Committer 1

commons math Committer 4

mahout Committer 4

hadoop Contributor 3

commons math Contributor 5

commons-codec Contributor 1

commons sandbox pipeline Contributor 2

Apache Commons Committer 1

Quantitatively Evaluating Test-Driven Development 41

dbc4j Committer 5

Commons Net Contributor 1

Apache Commons Math Contributor 2

JTidy Contributor 2

Jericho HTML Parser Committer 1

Commons. JIRA Outlet. OSJava.

Tomcat/Taglibs. ex-Maven, Struts,

Roller.

Committer 3

htmlparser Committer 5

XWiki Committer 2

XWIKI Committer 3

jalopy Committer 4

JTrac, Flazr Committer 2

NekoHTML Contributor 2

jtidy Committer 1

Mocha (http://mocha.rubyforge.org/) Committer 5

rails Contributor 5

vanilla-rb Committer 4

Selecting the Experimental Groups

In a perfect setting, the two samples would be identical. Unfortunately, since Open

Source projects are written by dozens of different developers, it is extremely difficult

to isolate variables such as number of developers and developer level of experience.

Instead, the goal of this work was to keep the two groups as similar as possible in

terms of project size. This was primarily to avoid larger code bases having inherently

lower scores on the object-oriented metrics due to the natural increased complexity

of larger code bases.

To estimate project size, lines of code were used. Only Java code was counted,

ignoring white space and comments. Where possible, these measurements were taken

from Ohloh, an online Open Source project information repository (Ohloh, 2009).

Occasionally, the data were missing. In those cases, the lines of code measurements

were taken using JavaNCSS (Lee, 2009), and the exceptions are noted. Projects whose

Quantitatively Evaluating Test-Driven Development 42

Figure 5.1: TDD Survey

Quantitatively Evaluating Test-Driven Development 43

primary language is not Java were excluded, as were survey results from contributors

on the grounds that contributors are likely to contribute to a smaller portion of the

codebase than actual committers. Also excluded were survey results where people

included multiple projects in a single response.

Additionally, projects with multiple active development lines whose survey re-

sults did not indicate to which line they apply were excluded. For example, Apache

JDO had an active 1.0 and 2.0 branch, but the survey participant who was a com-

mitter on that project did not indicate which line was developed using TDD, so JDO

was excluded. Finally, projects whose source code could not be readily downloaded

were excluded (Dbc4j and Jalopy, for example).

Table 5.2 contains the list of projects included, categorized as either TDD

projects or Non-TDD projects. Projects whose survey participants claimed TDD

adherence at an average score of 4 or above were categorized as TDD projects, while

projects with an average of 2 or less were categorized as Non-TDD. All other scores

were considered neutral.

Table 5.2: Open Source Project Categorization

Project Lines of Java Code Avg. TDD Score Group

Allelogram 3,257 4 TDD

Apache JSPWiki 70,065 1.3 Non-TDD

Apache Mahout 47,076 4 TDD

Commons Math 32,5921 4 TDD

DAOTools 489 5 TDD

FitNesse 102,068 5 TDD

HTMLParser 14,7561 5 TDD

Hudson 324,152 5 TDD

JAMWiki 21,600 1 Non-TDD

Jericho HTML Parser 7,4341 1 Non-TDD

JTidy 21,754 1 Non-TDD

JUnit 12,849 5 TDD

JXTA JXSE 139,557 3 Mixed

XEclipse 20,184 2 Non-TDD

XWiki 367,201 2 Non-TDD

1Source: JavaNCSS

Quantitatively Evaluating Test-Driven Development 44

For both the TDD and Non-TDD group, this work selected a small (about

10,000 Lines of Java code) project, a medium (about 30,000 lines) project, a large

(about 100,000 lines) project, and a very large (about 300,000 lines) project. The

selected projects were JUnit, Commons Math, FitNesse, and Hudson in the TDD

experimental group, and Jericho HTML Parser, JAMWiki, JSPWiki, and XWiki in

the Non-TDD control group.

Exclusions

The code that was analyzed was a specific subset of the overall project code. For

projects that consisted of multiple modules (specifically JAMWiki, Hudson, and

XWiki), only the ‘Core’ module was analyzed. The core modules are likely to be

the ones that are worked on most frequently, and are generally the most important

to the project.

Additionally, all tests were removed prior to analysis. A Test Class T for Class

A inherently couples T to A, unfairly penalizing the coupling scores of projects with

higher test coverage. Most importantly, tests themselves are not designed using TDD,

so their measurement does not tell us anything about the efficacy of Test-Driven

Development.

Furthermore, any code samples that were part of the source tree were excluded.

Occasionally, projects include source code example files for users to have as a point

of reference for using their library. These example files are not part of the real source

tree, and thus were not analyzed as if they were.

Lastly, all generated code was excluded from analysis. Some projects rely on

other tools to generate Java files used in the project. These tools are generally invoked

as part of the project building process. The code output by these tools is inherently

not designed using TDD, and the code is not written by human beings. Generated

code does not contribute to code complexity, as it has little to no reason to be read

(since it cannot be modified by hand). Only source code that was part of the project

prior to the project being built was considered in the analysis.

Versions

Where possible, source code for analysis was checked out directly from the source

code repository for the project. The latest version at the time was generally what

was analyzed. In cases where the latest version of the code was not available or did

Quantitatively Evaluating Test-Driven Development 45

not compile, the most recent tagged version was used instead. Table 5.4 provides the

source of the code, the version, and the date for all projects analyzed.

Table 5.4: Project Versions Used

Project Source Version Date

JUnit Git HEAD:master September 27, 2009

Commons Math SVN trunk:rev. 820145 October 10, 2009

FitNesse Git HEAD:master September 26, 2009

Hudson Git tag ‘1.322’ September 27, 2009

Jericho Source Jar 3.1 September 29, 2009

JAMWiki SVN trunk:rev. 2719 October 10, 2009

JSPWiki SVN tag ‘jspwiki 2 8 2’ September 27, 2009

XWiki SVN trunk:rev. 24358 October 10, 2009

Static Analysis Tools

The Eclipse Metrics project for the popular Integrated Development Environment

Eclipse was used for the metrics measurements. As of this writing, the latest version

of Metrics is 1.3.6, which was the version used.

Eclipse Metrics analyzes compiled code (rather than source code) to gather basic

information about many of the metrics outlined in Chapter 4. For these metrics,

it supplies totals, means, standard deviations, and maximums. Figure 5.2 shows

example output from this plugin.

Quantitatively Evaluating Test-Driven Development 46

Figure 5.2: The Eclipse Metrics Plugin

For the purposes of this experiment, the overall averages for each project were

used for analysis. Each of these metrics was provided by the tool as an average

per-package, per-class, or per-method.

Eclipse Metrics was able to track all of the desired metrics with a single ex-

ception: the number of lines of code per class. However, the tool did provide the

average Lines of Code per Method (Method Lines of Code, or MLOC) and Methods

per Class. Multiplying these two numbers together yields the Lines of Code per Class

Quantitatively Evaluating Test-Driven Development 47

(Class Lines of Code, or CLOC):

Lines of Code

Method
· Method

Class
=

Lines of Code

Class

With this calculation for CLOC, Eclipse Metrics provided all of the information

needed to collect the metrics.

Projects were imported into Eclipse using Maven pom.xml or Ant build.xml

files where possible, then had the Eclipse Metrics module enabled before being fully

compiled. Once enabled, the Metrics plugin calculated the various values, which were

then exported in XML format. Eclipse Metrics required that projects successfully

compile before metrics could be tabulated and provided no mechanism for excluding

specific files. Tests and sample code were excluded by simply deleting the files, but

generated code was often required for the project to successfully build, so a Ruby

program was created specifically to parse the Metrics XML and extract the desired

values, excluding from tabulation any files that were deemed as exclusions via the

criteria specified on page 44. The source code for this program can be found in

Appendix A.

Chapter 6

Experimental Results

Using the Eclipse Metrics tool, raw data was gathered for the projects being analyzed.

The data is shown in Figure 6.1, which tracks the Number of Methods (NOM),

Number of Classes (NOC), Number of Packages (NOP), Lack of Cohesion Meth-

ods (LCOM), Specialization Index (SI), Number of Parameters (PAR), Number of

Static Methods (NSM), Afferent Coupling (Ca), Efferent Coupling (Ce), Normalized

Distance from The Main Sequence (D′), Depth of Inheritance Tree (DIT), Method

Lines of Code (MLOC), Class Lines of Code (CLOC), McCabe Cyclomatic Com-

plexity (MCC), and Nested Block Depth (NBD) for each project.

Quantitatively Evaluating Test-Driven Development 49

Table 6.1: Experimental Results Overview

TDD Non-TDD
JUnit Math Fitnesse Hudson Jericho JAMWiki JSPWiki XWiki

NOM 686 3,244 3,878 4,942 950 553 2,239 5,970
NOC 128 317 629 838 112 67 380 547
NOP 26 37 52 59 2 5 40 80
LCOM 0.129 0.24 0.241 0.15 0.239 0.332 0.22 0.178
SI 0.132 0.098 0.239 0.249 0.196 0 0.258 0.506
PAR 1.04 1.129 0.915 0.889 1.058 1.072 0.989 1.453
NSM 1.375 1.054 0.596 0.574 1.402 2.97 0.629 0.569
Ca 7.692 12.395 15.788 12.574 1 17.333 16.225 14.563
Ce 4.115 7.026 7.288 7.265 5.5 10.5 7.325 6.113
D′ 0.276 0.302 0.373 0.157 0.007 0.412 0.401 0.301
DIT 1.875 2.013 1.771 2.014 2.054 1.194 1.968 2.302
MLOC 4.105 8.88 3.942 5.257 8.182 6.142 11.963 7.75
CLOC 21.999 90.874 24.305 31.0 69.397 50.697 70.489 84.583
MCC 1.399 2.174 1.525 1.679 2.258 2.334 2.815 2.21
NBD 1.154 1.631 1.214 1.234 1.287 1.438 1.749 1.546

Effect of TDD on Cohesion

To determine how effective Test-Driven Development is at increasing the cohesion

of a codebase, the projects were analyzed according to each of the cohesion-based

metrics, which were then aggregated together to determine an overall effect.

Lack of Cohesion Methods

Figure 6.1 illustrates the different LCOM scores of the projects analyzed. Each

project has been grouped according to its size (small, medium, large, and very large).

Quantitatively Evaluating Test-Driven Development 50

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

Small Medium Large Very Large

L
a

c
k
 o

f
C

o
h

e
s
io

n
 M

e
th

o
d

s

Project Size

TDD
Non-TDD

J
U

n
it

M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.1: Lack of Cohesion Methods by Project Size

Within the size categories, every project written with Test-Driven Development

scored lower than its Non-TDD counterpart with the exception of FitNesse, whose

score was only slightly higher. Recall that LCOM should be as low as possible, so

Test-Driven Development offered a significant improvement for LCOM .

LCOM is measured as an average across classes. The overall effect of Test-

Driven Development on LCOM was determined by taking a weighted average in which

each project’s number of classes determined it’s weight in the formula. Essentially,

each project score was scaled according to that project’s size (measured in number

of classes) in order to determine the overall average for LCOM within TDD projects

(LOCMTDD) and Non-TDD projects (LOCMNTDD). This effectively treated all of

the TDD code as one project and all of the Non-TDD code as a separate project.

Doing so yielded the following result:

LOCMTDD =
(0.129 · 128) + (0.240 · 317) + (0.241 · 629) + (0.150 · 838)

128 + 317 + 629 + 838
≈ 0.193

LOCMNTDD =
(0.239 · 112) + (0.332 · 67) + (0.22 · 380) + (0.178 · 547)

112 + 67 + 380 + 547
= 0.208

Quantitatively Evaluating Test-Driven Development 51

More precisely, LOCMTDD = 0.1934524 and LOCMNTDD = 0.208. Since

LCOM should be as low as possible, Test-Driven Development offered an average

improvement of 6.97%.

Specialization Index

The effect of Test-Driven Development on the Specialization Index metric is illus-

trated in Figure 6.2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Small Medium Large Very Large

S
p

e
c
ia

liz
a

ti
o

n
 I

n
d

e
x

Project Size

TDD
Non-TDD

J
U

n
it

M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.2: Specialization Index by Project Size

Here again, all of the TDD projects scored better (closer to 0) than their Non-

TDD counterparts with a single exception. In this case, the exception was that

JAMWiki scored significantly better than Commons Math, with a Specialization In-

dex of 0. This low score for JAMWiki was caused by the fact that not a single method

on any class in the codebase overrides a parent method, partially due to the fact that

the vast majority of JAMWiki’s classes extend directly from java.lang.Object.

It is also interesting to observe how much worse XWiki scored on this metric

than its categorical counterpart, Hudson. It could be argued that XWiki is a very

large project, and as such should have a tendency toward complex type hierarchies,

Quantitatively Evaluating Test-Driven Development 52

but Hudson too is very large and scored better on this metric than even JSPWiki, a

significantly smaller project.

As with LCOM , the SI metric is per class, so a weighted average was taken

where projects were weighted according to their number of classes. Following this

process found that SITDD = 0.2128426 and SINTDD = 0.359. For SI, TDD improved

Specialization Index by 40.67%.

Number of Parameters

Test-Driven Development’s effect on the Number of Parameters metric is shown in

Figure 6.3.

 0

 0.5

 1

 1.5

 2

Small Medium Large Very Large

N
u

m
b

e
r

o
f

P
a

ra
m

e
te

rs

Project Size

TDD
Non-TDD

J
U

n
it M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

nJ
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.3: Number of Parameters by Project Size

Here, the project measurements varied far less than with the previous two

metrics. All eight projects scored between an average of 0.8 and 1.5 parameters

per method. Still, once again all TDD projects except one scored better than their

Non-TDD counterparts, the exception being that the Non-TDD JAMWiki slightly

edged below Commons Math.

PAR is the average number of parameters per method, not per class. Thus, to

calculate a weighted average, the PAR values were scaled by the number of methods

Quantitatively Evaluating Test-Driven Development 53

per project (NOM) rather than the number of classes (NOC).

PARTDD =
(1.040 · 686) + (1.129 · 3244) + (0.915 · 3878) + (0.889 · 4942)

686 + 3244 + 3878 + 4942
≈ 0.966

PARNTDD =
(1.058 · 950) + (1.072 · 553) + (0.989 · 2239) + (1.453 · 5970)

950 + 553 + 2239 + 5970
= 1.300

Here, PARTDD = 0.9660960 and PARNTDD = 1.286, so Test-Driven Develop-

ment gave a 24.86% improvement in the PAR metric.

Number of Static Methods

Test-Driven Development’s effect on the Number of Static Methods metric is shown

in Figure 6.4.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Small Medium Large Very Large

N
u

m
b

e
r

o
f

S
ta

ti
c
 M

e
th

o
d

s

Project Size

TDD
Non-TDD

J
U

n
it

M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.4: Number of Static Methods by Project Size

Surprisingly, despite the fact that Commons Math is designed as a utility library

(and should therefore contain a very large number of static methods), it still scores

much better than its counterpart, JAMWiki. Aside from the substantial difference

Quantitatively Evaluating Test-Driven Development 54

between Commons Math and JAMWiki, the projects didn’t differ much for the NSM

metric.

NSM is the average number of static methods per class, so the overall effect

of TDD on NSM was calculated in the same way as LCOM and SI. When this

was done, NSMTDD = 0.7144425 and NSMNTDD = 0.819. For NSM , Test-Driven

Development offered an improvement of 12.81%

Overall

The overall effect of Test-Driven Development on cohesion is summarized in Table

6.3. The overall effect was determined by taking the average of the improvement

percentages.

Table 6.3: Test-Driven Development’s Effect on Cohesion

Metric TDD Non-TDD TDD Improvement

LCOM 0.1934524 0.208 6.97%

SI 0.2128426 0.359 40.67%

PAR 0.9660960 1.286 24.86%

NSM 0.7144425 0.819 12.81%

Overall 21.33%

According to this data, Test-Driven Development improved the level of cohesion

by about 21%.

When this same process was modified to use a regular arithmetic mean in place

of the weighted average for each metric, Test-Driven Development improved the level

of cohesion by 24%. This indicates that the process of taking a weighted average

rather than an arithmetic mean did not drastically alter the results.

Effect of TDD on Coupling

Following the same analyzation process used to determine Test-Driven Development’s

effect on cohesion, TDD’s effect on coupling was determined.

Afferent Coupling

Test-Driven Development’s effect on Afferent Coupling is shown in Figure 6.5.

Quantitatively Evaluating Test-Driven Development 55

 0

 5

 10

 15

 20

 25

Small Medium Large Very Large

A
ff

e
re

n
t

C
o

u
p

lin
g

Project Size

TDD
Non-TDD

J
U

n
it

M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.5: Afferent Coupling by Project Size

Here, all TDD projects scored better than their Non-TDD counterparts except

for in the case of the smallest projects, JUnit. JUnit’s counterpart, Jericho, had an

extremely low score due to the fact that it contains only two packages, one of which

contains 110 of the 112 project classes. Afferent Coupling measures the degree to

which a package is depended upon by classes outside of, but in Jericho’s case the vast

majority of classes are in a single package, so its Afferent Coupling score is very low.

Since Ca is per package rather than class or method, the number of packages

per project (NOP) was used to determine the weighted average.

CaTDD
=

(7.692 · 26) + (12.395 · 37) + (15.788 · 52) + (12.574 · 59)

26 + 37 + 52 + 59
≈ 12.767

CaNTDD
=

(1.000 · 2) + (17.333 · 5) + (16.225 · 40) + (14.563 · 80)

2 + 5 + 40 + 80
= 14.982

Here, CaTDD
= 12.7669483 and CaNTDD

= 14.982, so Test-Driven Development

gave a 14.78% improvement in the Ca metric.

Quantitatively Evaluating Test-Driven Development 56

Efferent Coupling

Test-Driven Development’s effect on Efferent Coupling is shown in Figure 6.6.

 0

 5

 10

 15

 20

Small Medium Large Very Large

E
ff

e
re

n
t

C
o

u
p

lin
g

Project Size

TDD
Non-TDD

J
U

n
it

M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.6: Efferent Coupling by Project Size

Here, three of the four TDD projects score lower than their Non-TDD counter-

parts, though not by a particularly large margin.

Like Ca, Ce is per package, so the weighted averages were determined in the

same manner.

Here, CeTDD
= 6.7503621 and CeNTDD

= 6.658, so Test-Driven Development

gave a -1.39% improvement in the Ce metric. In this case, Test-Driven Development

decreased the quality of the code.

Normalized Distance from The Main Sequence

Test-Driven Development’s effect on the Normalized Distance from The Main Se-

quence metric is shown in Figure 6.7.

Quantitatively Evaluating Test-Driven Development 57

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Small Medium Large Very Large

D
is

ta
n

c
e

 f
ro

m
 t

h
e

 M
a

in
 S

e
q

u
e

n
c
e

Project Size

TDD
Non-TDD

J
U

n
it M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.7: Normalized Distance from The Main Sequence by Project Size

Once again, the large difference between JUnit and Jericho can be explained

largely by the fact that Jericho only has two packages. Jericho’s primary package

contains nearly every class, so it’s instability is very high (0.909), but due to a high

level of abstractness within the package it scores extremely close to the Main Sequence.

As with the other coupling metrics, Normalized Distance from the Main Se-

quence is per-package. D′
TDD = 0.2701667 and D′

NTDD = 0.332, so Test-Driven

Development provided an 18.68% improvement in the D′ metric.

Depth of Inheritance Tree

The Depth of Inheritance Tree metric is graphed in Figure 6.8.

Quantitatively Evaluating Test-Driven Development 58

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Small Medium Large Very Large

D
e

p
th

 o
f

In
h

e
ri
ta

n
c
e

 T
re

e

Project Size

TDD
Non-TDD

J
U

n
it

M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.8: Depth of Inheritance Tree by Project Size

Once again, JAMWiki scores extremely well on the metric for the same reason

it scored so well on the SI metric: the project uses very little inheritance at all.

JAMWiki not only bested its TDD counterpart, but outscored all seven of the other

projects in the study.

Unlike other coupling metrics, DIT is measured per class, not per package. The

weighted average for this metric utilized NOC like LCOM .

DITTDD = 1.9245879 and D′
NTDD = 2.095, so Test-Driven Development gave

an 8.13% improvement in the DIT metric.

Overall

The overall effect of TDD on coupling is summarized in Table 6.4.

Quantitatively Evaluating Test-Driven Development 59

Table 6.4: Test-Driven Development’s Effect on Coupling

Metric TDD Non-TDD TDD Improvement

Ca 12.7669483 14.982 14.78%

Ce 6.7503621 6.658 -1.39%

D′ 0.2701667 0.332 18.68%

DIT 1.9245879 2.095 8.13%

Overall 10.05%

According to this data, Test-Driven Development improved the level of coupling

by about 10%. Following this same process without weighting the scores according

to project size yielded an improvement of only 3.30%.

Effect of TDD on Complexity

Test-Driven Development’s effectiveness with regard to code complexity was calcu-

lated following the same procedure as with cohesion and coupling.

Method Lines of Code

Test-Driven Development’s effect on Method Lines of Code (MLOC) is shown in

Figure 6.9.

Quantitatively Evaluating Test-Driven Development 60

 0

 5

 10

 15

 20

Small Medium Large Very Large

M
e

th
o

d
 L

in
e

s
 o

f
C

o
d

e

Project Size

TDD
Non-TDD

J
U

n
it

M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.9: Method Lines of Code by Project Size

Here again, three of the four TDD projects did better than their counterparts.

FitNesse in particular scored far, far better than JSPWiki. In fact, FitNesse scored

better than all seven other projects in the study. This can likely be explained by the

fact that Robert Martin is the primary developer for FitNesse and also the author

of several books and articles about writing clean code and short methods (Martin,

2008). It should come as no surprise that a leading advocate of short methods had,

on average, the shortest methods in the study.

MLOC is per method, so the number of methods per project (NOM) was used

to determine the weighted average.

Here, MLOCTDD = 5.7168565 and MLOCNTDD = 8.672, so Test-Driven De-

velopment gave a 34.08% improvement in the MLOC metric.

Class Lines of Code

Test-Driven Development’s effect on Class Lines of Code (CLOC) is shown in Figure

6.10.

Quantitatively Evaluating Test-Driven Development 61

 0

 20

 40

 60

 80

 100

 120

Small Medium Large Very Large

C
la

s
s
 L

in
e

s
 o

f
C

o
d

e

Project Size

TDD
Non-TDD

J
U

n
it

M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i X
W

ik
i

Figure 6.10: Class Lines of Code by Project Size

Once again, FitNesse scored extremely well for reasons similar to why it scored

so well on MLOC. In the case of CLOC, three of the four TDD projects scored

much, much better than their counterparts. Commons Math scored worse than it’s

Non-TDD counterpart, JAMWiki, but it’s worth noting that JAMWiki scored worse

than all of the TDD projects other than Commons Math. This indicates that the

disparity between Commons Math and JAMWiki says less about TDD than it does

about Commons Math.

CLOC is per class, so the number of classes per project (NOC) was used to de-

termine the weighted average. CLOCTDD = 38.1216800 and CLOCNTDD = 76.150,

so Test-Driven Development gave a 49.94% improvement in the MLOC metric.

McCabe Cyclomatic Complexity

The effect on the McCabe Cyclomatic Complexity (MCC) metric is illustrated in

Figure 6.11.

Quantitatively Evaluating Test-Driven Development 62

 0

 1

 2

 3

 4

 5

Small Medium Large Very Large

M
c
C

a
b

e
 C

y
c
lo

m
a

ti
c
 C

o
m

p
le

x
it
y

Project Size

TDD
Non-TDD

J
U

n
it

M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.11: McCabe Cyclomatic Complexity by Project Size

All four TDD projects scored considerably better than their Non-TDD counter-

parts on the MCC metric. In fact, even the worst-scoring TDD project (Commons

Math) performed better than the best-scoring Non-TDD project (XWiki) on this

metric.

MCC is per method, so the number of methods per project (NOM) was used

for weighting purposes. MCCTDD = 1.7430383 and MCCNTDD = 2.361, so Test-

Driven Development provided an improvement of 26.18% for McCabe Cyclomatic

Complexity.

Nested Block Depth

The Nested Block Depth (NBD) metric is graphed in Figure 6.12.

Quantitatively Evaluating Test-Driven Development 63

 0

 0.5

 1

 1.5

 2

 2.5

 3

Small Medium Large Very Large

N
e

s
te

d
 B

lo
c
k
 D

e
p

th

Project Size

TDD
Non-TDD

J
U

n
it

M
a

th

F
it
n

e
s
s
e

H
u

d
s
o

n

J
e

ri
c
h

o

J
A

M
W

ik
i

J
S

P
W

ik
i

X
W

ik
i

Figure 6.12: Nested Block Depth by Project Size

Once again, three of the four TDD projects performed better and, once again,

the only one to perform worse was Commons Math. It seems that Commons Math

simply suffers from a high level of code complexity in general. It is worth noting that

the other three TDD projects claimed a TDD adherence level of 5 while Commons

Math claimed a TDD adherence level of 4. This means that, while still classified as a

TDD project, Commons Math likely had a greater portion of its code written without

Test-Driven Development than did the other TDD projects.

NBD is per method, so the number of methods per project (NOM) was used

for weighting purposes again. NBDTDD = 1.3246218 and NBDNTDD = 1.536, so

Test-Driven Development improved Nested Block Depth by 13.74%.

Overall

The overall effect of TDD on complexity is summarized in Table 6.5.

Quantitatively Evaluating Test-Driven Development 64

Table 6.5: Test-Driven Development’s Effect on Complexity

Metric TDD Non-TDD TDD Improvement

MLOC 5.7168565 8.672 34.08%

CLOC 38.1216800 76.150 49.94%

MCC 1.7430383 2.361 26.18%

NBD 1.3246218 1.536 13.74%

Overall 30.98%

The data indicates that Test-Driven Development improved the complexity level

of code by about 31%. Following this same process without weighting the scores

according to project size yielded an improvement of 29.08%.

Overall Effect of TDD

Test-Driven Development improved the level of cohesion by 21.33%, the level of cou-

pling by 10.05%, and the level of complexity by 30.98%. Averaging these together

yields an overall improvement of 20.79%. The average of the three unweighted per-

centages is 18.73%, indicating that any biases that may have resulted from weighting

the scores by project size weren’t particularly influential.

Test-Driven Development most strongly influenced scores for complexity, a cor-

relation made even stronger by the fact that the one TDD project that had a lower

level of TDD adherence was the only TDD project to score lower than it’s Non-TDD

counterpart in code complexity, and frequently did so.

Threats to Validity

Before conclusions are drawn from this data, it is important to note that, as with any

study, there are some potential threats to the validity of the study.

First and foremost, this study’s sample size was quite small. Only four programs

were in the experimental group and control groups each. This was due primarily to

the unfortunately low number of survey participants. Despite efforts to distribute

and spread the survey as widely as possible, only sixty people filled out the survey.

Of those, only a small handful of projects were written using Java. Given the large

number of open source projects in existence, a sample size of only eight makes it easy

Quantitatively Evaluating Test-Driven Development 65

to argue that the numbers in this study may not reach a suitable level of statistical

significance.

Another potential problem is the survey itself. Because the survey was opt-in,

there was no way to verify that the survey responses for a particular project were

representative of the project’s developers. With no more than five survey responses

for any given project, it’s entirely possible that a project written using primarily

Test-Driven Development had survey participants who simply did not adhere to the

practice while developing, incorrectly categorizing a TDD’d project as Non-TDD.

Similarly, projects written mostly without Test-Driven Development could have had

a few TDD adherents fill out the survey, or even exaggerate the usage of TDD when

responding. The effect of this problem has been somewhat minimized by analyzing

eight different projects, but it’s entirely possible that the lines between the two groups

were not drawn accurately enough.

Additionally, object-oriented metrics are simply an imperfect way of measuring

code quality. The quality of code is largely subjective, and though the metrics used

in this work are a solid attempt at estimating the levels of quality contained in code,

they are not ideal measurements. Design elegance is a complex subject, and it is

something difficult to show mathematically.

Furthermore, as pointed out in Chapter 2, one of the key benefits of Test-Driven

Development is that a byproduct of using it is a comprehensive suite of unit tests.

It could be argued that the large number of unit tests was responsible for cleanliness

of the code, rather than the process used to develop it. This concern should be

somewhat mitigated by the fact that all eight projects had large numbers of tests,

but it’s a valid concern nonetheless.

It is also possible that the samples themselves were biased in favor of Test-

Driven Development. One of the projects, JUnit, was written primarily by Kent

Beck, arguably the inventor of Test-Driven Development as a software engineering

practice. Another project, FitNesse, was written mostly by Robert C. Martin, author

of a number of books about clean code as well as the creator of a number of metrics

used in this work (Ca, Ce, and D′). It would be reasonable to expect that the code

written by these individuals would generally be of higher quality than code written

by others, and since the two of them practiced Test-Driven Development, it might

have unfairly affected the TDD group. This concern should be somewhat mitigated

by the fact that JUnit and FitNesse were sometimes the worst-scoring projects in

their size categories.

Quantitatively Evaluating Test-Driven Development 66

Lastly, a great deal of nuance was lost in the process of analyzing the metrics

at all. The metrics themselves were averages across projects, and those averages

were averaged together to determine the percent improvement offered by Test-Driven

Development. These averages were, once again, averaged to determine the overall

effectiveness of TDD. Each time a set of numbers was averaged, information was lost.

Additionally, by taking weighted averages to determine scores for the experimental

and control groups, the larger projects in the experiment (Hudson and XWiki) in-

fluenced the final results greatly. This problem was minimized by the fact that the

non-weighted averages were provided as well, but in that case it seems that the smaller

projects might wield a disproportionately high influence over the final results.

Chapter 7

Conclusions

This study provided substantial evidence that Test-Driven Development is, indeed,

an effective tool for improving the quality of source code. Test-Driven Development

offered an overall improvement of 21% over code written using the test-last technique.

Considering the sheer volume of the codebases being analyzed, it’s reasonable to

conclude that the substantial difference is noteworthy.

Test-Driven Development was most effective at decreasing the complexity of the

code, with an improvement of 31%. Complexity deals exclusively with the code inside

of a module, ignoring any relationships with other aspects of a system. Reducing the

Method Lines of Code metric could be accomplished by extracting methods out of

other methods. According to Fowler et al. (1999), 99% of the time the simple solution

to reducing the length of a method is to extract new methods from them, replacing

a large block of code with a well-named function call that performs the same task.

Similarly, Martin (2008) explains that the way to reduce the level of indentation

(which affects both Nested Block Depth and McCabe Cyclomatic Complexity) is to

replace blocks of code that execute under if, else, or while statements with single-

line function calls. In short, the best way to reduce code complexity is to regularly

refactor the code. It is not surprising, then, that Test-Driven Development is so

effective at improving complexity metrics, since refactoring is a crucial step of the

Test-Driven Development cycle.

The next-best improvement was on cohesion metrics, an improvement of 21%.

Recall that cohesion is essentially a measure of how related all of the responsibilities

of a module are. Every time a programmer writes code that interacts with a class, she

is given a reminder of that class’s responsibilities. Test-Driven Development, because

Quantitatively Evaluating Test-Driven Development 68

it requires writing the test for the responsibility as well as the implementation of

that responsibility, faces programmers with this reminder twice as often before the

code is written. Subramaniam and Hunt (2006) argue that writing tests first forces

programmers to look at their classes as users of the class’s interface, rather than as

implementors of that class. This perspective shift provides constant opportunity for

the programmer to be confronted by the question of how cohesive a code change is.

Essentially, each test that is written to add new behavior makes the programmer ask

“is this the right place for this new functionality?” As long as programmers remain

cognizant of this concern, Test-Driven Development should help them see when a class

has gained too many responsibilities, and the refactoring portion of the cycle should

make it easy to fix these kinds of issues before they become serious problems. This

seems like an adequate explanation for the improvement TDD offers for cohesion.

It also makes sense why this improvement would be somewhat lower than that of

complexity - it requires a more substantial cognitive effort to continually ask oneself

if the tests being written indicate that a class is growing out of control.

The smallest improvement Test-Driven Development offered was on coupling

metrics, only 10%. Miller (2008) explains that tight coupling means that modules

and subsystems must know the details of other modules and subsystems in order

to function. This means that, for tightly coupled systems, in order to write tests

that verify whether a module or subsystem functions correctly, the test must also

involve the details of other modules and subsystems. Essentially, tests become harder

and harder to write the more tightly coupled the different parts of the system are.

As explained by Tate and Gehtland (2004), the best defense against high system

coupling is writing tests. Tests act as additional clients to the modules of a system,

and each test needs to create (or create mock objects for) everything with which the

module being tested interacts. If developers remain disciplined about following Test-

Driven Development practices, the tests for highly coupled modules become more

difficult to write, forcing them to eventually refactor to reduce or remove coupling in

order to write additional tests. This is a possible explanation for why Test-Driven

Development helps reduce the coupling in a project. At the same time, the process of

mocking and stubbing out the modules that a module under test requires is always

becoming easier with mocking frameworks like JMock, EasyMock, and Mockito, which

are becoming increasingly popular and may be an explanation for the relatively low

improvement in coupling scores.

Overall, Test-Driven Development practices provide a well-structured method-

Quantitatively Evaluating Test-Driven Development 69

ology for helping developers see coding problems as they start, well before they become

serious design problems in the code, and the safe refactoring offered by a suite of unit

tests gives developers the tools to solve those problems early. With an improvement

in metrics scores of 21%, Test-Driven Development appears to be extremely valuable

as a Software Engineering practice. This work lends a great deal of additional validity

to the assertion by Martin (2007) that not following the disciplines of Test-Driven

Development would simply be unprofessional.

Further Work

This work can be greatly improved upon with additional research. First and fore-

most, it would be better to have a larger sample of code to analyze. Though the

amount of code studied in this work was substantial, a greater sample size would lend

more statistical significance to the results found. Had more Open Source developers

responded to the survey, the samples would likely have been improved a great deal.

Additionally, projects could be analyzed using additional metrics beyond the

twelve used in this work. Bansiya and Davis (2002) propose a new cohesion metric

called Cohesion Among Methods in a Class (CAMC). Counsell et al. (2006) discuss a

recently-proposed cohesion metric called the Normalised Hamming Distance (NHD).

Briand et al. (1999) propose a number of coupling-related metrics, and Chidamber and

Kemerer (1991) introduce a coupling metric called Coupling Between Objects (CBO).

Chahal and Singh (2009) discuss a complexity metric called Weighted Methods Per

Class (WMC) which combines the Number of Methods metric with the McCabe Cy-

clomatic Complexity metric to approximate the number of responsibilities belonging

to a class. Kafura (1985) discusses many additional metrics beyond these, and other

sources propose even more. With additional metrics, the same methodologies utilized

in this work could be significantly enhanced.

Another potential area for additional work would be a less metrics-oriented

approach to measuring code quality. One possible example would be a more subjective

rating by a group of seasoned software engineers who are blind to which projects were

written using TDD and which without. Their aggregated ratings along various criteria

such as “ease of understandability” or “level of brittleness” could greatly improve the

understanding of Test-Driven Development’s efficacy.

Test-Driven Development is still a relatively young practice, so there is still a

great deal of additional research that can be done to validate or refute its effectiveness.

Bibliography

Abelson, H., & Sussman, G. J. (1996). Structure and interpretation of computer

programs . Cambridge, MA: The MIT Press. 3

Astels, D. (2003). Test-driven development: A practical guide. Upper Saddle River,

NJ: Prentice Hall PTR. 7

Bain, S. L. (2008). Emergent design: The evolutionary nature of professional software

development . Boston, MA: Addison-Wesley Professional. 9

Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented design

quality assessment. IEEE Trans. Softw. Eng., 28 (1), 4–17. 69

Basili, V. R., Briand, L., & Melo, W. L. (1995). A validation of object-oriented

design metrics as quality indicators. IEEE Transactions on Software Engineering ,

22 , 751–761. 32

Beck, K. (2002). Test driven development: By example. Boston, MA: Addison-Wesley

Professional. 7, 8

Beck, K., & Andres, C. (2004). Extreme programming explained . Boston, MA:

Addison-Wesley Professional. 5, 8

Beck, K., & Fowler, M. (2000). Planning extreme programming . Boston, MA:

Addison-Wesley Professional. 6

Bhat, T., & Nagappan, N. (2006). Evaluating the efficacy of test-driven development:

industrial case studies. In ISESE ’06: Proceedings of the 2006 ACM/IEEE inter-

national symposium on Empirical software engineering , (pp. 356–363). New York,

NY: ACM. 15

Bloch, J. (2008). Effective java. Upper Saddle River, NJ: Prentice Hall PTR. 31

Quantitatively Evaluating Test-Driven Development 71

Briand, L. C., Daly, J. W., & Wüst, J. K. (1999). A unified framework for coupling

measurement in object-oriented systems. IEEE Trans. Softw. Eng., 25 (1), 91–121.

69

Burke, E. M., & Coyner, B. M. (2003). Java extreme programming cookbook . Se-

bastopol, CA: O’Reilly Media, Inc. 9

Cavaness, C., Keeton, B., Friesen, J., & Weber, J. (2000). Special edition using java

2 . Boston, MA: Que. 23

Chahal, K. K., & Singh, H. (2009). Metrics to study symptoms of bad software

designs. SIGSOFT Softw. Eng. Notes , 34 (1), 1–4. 69

Charney, R. (2005). Programming tools: Code complexity metrics. Linux Journal .

Retrieved from http://www.linuxjournal.com/article/8035 33

Chidamber, S. R., & Kemerer, C. F. (1991). Towards a metrics suite for object

oriented design. In OOPSLA ’91: Conference proceedings on Object-oriented pro-

gramming systems, languages, and applications , (pp. 197–211). New York, NY:

ACM. 21, 69

Copeland, L. (2001). Extreme programming. Computerworld . Retrieved from

http://www.computerworld.com/softwaretopics/software/appdev/story/0,

10801,66192,00.html 2

Counsell, S., Swift, S., & Crampton, J. (2006). The interpretation and utility of three

cohesion metrics for object-oriented design. ACM Trans. Softw. Eng. Methodol.,

15 (2), 123–149. 69

Crispin, L., & House, T. (2002). Testing extreme programming . Boston, MA: Addison-

Wesley Professional. 7

El Emam, K., Benlarbi, S., Goel, N., Melo, W., Lounis, H., & Rai, S. N. (2002). The

optimal class size for object-oriented software. IEEE Trans. Softw. Eng., 28 (5),

494–509. 34

Feathers, M. (2004). Working effectively with legacy code. Upper Saddle River, NJ:

Prentice Hall PTR. 9

http://www.linuxjournal.com/article/8035
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html

Quantitatively Evaluating Test-Driven Development 72

Ford, N. (2008). The productive programmer . Sebastopol, CA: O’Reilly Media, Inc.

9

Ford, N. (2009). Evolutionary architecture and emergent design: Test-driven design,

part 1. IBM developerWorks . 9

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring:

Improving the design of existing code. Boston, MA: Addison-Wesley Professional.

12, 33, 34, 67

Freeman, E., Freeman, E., Bates, B., & Sierra, K. (2004). Head first design patterns .

Sebastopol, CA: O’Reilly Media, Inc. 20

Freeman, S., & Pryce, N. (2009). Growing object-oriented software, guided by tests .

Boston, MA: Addison-Wesley Professional. 2

Glover, A. (2006). In pursuit of code quality: Monitoring cyclomatic complex-

ity. IBM developerWorks . Retrieved from http://www.ibm.com/developerworks/

java/library/j-cq03316/ 33

Henderson-Sellers, B. (1995). Object-oriented metrics: Measures of complexity . Upper

Saddle River, NJ: Prentice Hall PTR. 21

Henney, K. (2004). Code versus software. Retrieved from http://www.artima.com/

weblogs/viewpost.jsp?thread=67178 19

Hevery, M. (2008). Static methods are death to testability.

Retrieved from http://googletesting.blogspot.com/2008/12/

static-methods-are-death-to-testability.html 26

Janzen, D. S. (2006). An empirical evaluation of the impact of test-driven development

on software quality . Ph.D. thesis, University of Kansas, Lawrence, KS. Adviser-

Saiedian, Hossein. 16

Jones, C. (2008). Applied software measurement . New York, NY: McGraw-Hill Os-

borne Media. 19

Kafura, D. (1985). A survey of software metrics. In ACM ’85: Proceedings of the

1985 ACM annual conference on The range of computing : mid-80’s perspective,

(pp. 502–506). New York, NY: ACM. 69

http://www.ibm.com/developerworks/java/library/j-cq03316/
http://www.ibm.com/developerworks/java/library/j-cq03316/
http://www.artima.com/weblogs/viewpost.jsp?thread=67178
http://www.artima.com/weblogs/viewpost.jsp?thread=67178
http://googletesting.blogspot.com/2008/12/static-methods-are-death-to-testability.html
http://googletesting.blogspot.com/2008/12/static-methods-are-death-to-testability.html

Quantitatively Evaluating Test-Driven Development 73

Kaufmann, R., & Janzen, D. (2003). Implications of test-driven development: a pilot

study. In OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications , (pp. 298–

299). New York, NY: ACM. 12, 13

Kegel, H., & Steimann, F. (2008). Systematically refactoring inheritance to delegation

in java. In ICSE ’08: Proceedings of the 30th international conference on Software

engineering , (pp. 431–440). New York, NY: ACM. 31

Kerievsky, J. (2004). Refactoring to patterns . Boston, MA: Addison-Wesley Profes-

sional. 34

Kernighan, B. W., & Plauger, P. J. (1978). The elements of programming style. New

York, NY: McGraw-Hill. 33

Koskela, L. (2007). Test driven: Practical tdd and acceptance tdd for java developers .

Greenwich, CT: Manning Publications. 6, 8

Langr, J. (2005). Agile java: Crafting code with test-driven development . Upper

Saddle River, NJ: Prentice Hall PTR. 8

Lee, C. C. (2009). Javancss - a source measurement suite for java. Retrieved from

http://www.kclee.de/clemens/java/javancss/#specification 41

Lorenz, M., & Kidd, J. (1994). Object-oriented software metrics . Upper Saddle River,

NJ: Prentice Hall PTR. 23

Lui, K. M., & Chan, K. C. C. (2008). Software development rhythms: Harmonizing

agile practices for synergy . New York, NY: Wiley. 6

Marco, L. (1997). Measuring software complexity. Enterprise Systems Journal . Re-

trieved from http://cispom.boisestate.edu/cis320emaxson/metrics.htm 32

Martin, R. C. (1994). Oo design quality metrics, an analysis of dependencies. Re-

trieved from http://www.objectmentor.com/resources/articles/oodmetrc.

pdf 27, 29

Martin, R. C. (2002). Agile software development, principles, patterns, and practices .

Upper Saddle River, NJ: Prentice Hall PTR. 7, 28, 29, 30

http://www.kclee.de/clemens/java/javancss/#specification
http://cispom.boisestate.edu/cis320emaxson/metrics.htm
http://www.objectmentor.com/resources/articles/oodmetrc.pdf
http://www.objectmentor.com/resources/articles/oodmetrc.pdf

Quantitatively Evaluating Test-Driven Development 74

Martin, R. C. (2007). Professionalism and test-driven development. IEEE Software,

24 (3), 32–36. 69

Martin, R. C. (2008). Clean code: A handbook of agile software craftsmanship. Upper

Saddle River, NJ: Prentice Hall PTR. 3, 25, 33, 34, 37, 60, 67

Martin, R. C., & Martin, M. (2006). Agile principles, patterns, and practices in c#.

Upper Saddle River, NJ: Prentice Hall PTR. 23

McCabe, T. J. (1976). A complexity measure. In ICSE ’76: Proceedings of the

2nd international conference on Software engineering , (p. 407). Los Alamitos, CA:

IEEE Computer Society Press. 34

McConnell, S. (2004). Code complete: A practical handbook of software construction.

Redmond, WA: Microsoft Press. 37

McLaughlin, B. D., Pollice, G., & West, D. (2006). Head first object-oriented analysis

and design. Sebastopol, CA: O’Reilly Media, Inc. 20

Miller, J. (2008). Patterns in practice: Cohesion and coupling. MSDN Magazine. 68

Moller, K.-H. (1992). Software metrics: A practitioner’s guide to improved product

development . Los Alamitos, CA, USA: IEEE Computer Society Press. 19

Mullaney, J. (2008). Test-driven development and the ethics of quality. Software Qual-

ity News . Retrieved from http://searchsoftwarequality.techtarget.com/

news/article/0,289142,sid92_gci1304738,00.html 9

Müller, M., & Hagner, O. (2002). Experiment about test-first programming. Software,

IEE Proceedings- [see also Software Engineering, IEE Proceedings] , 149 (5), 131–

136. 10

Naur, P., & Randell, B. (1969). Software engineering: Report of a conference spon-

sored by the nato science committee, garmisch, germany, 7-11 oct. 1968 . Brüssel:

Scientific Affairs Division, NATO. 1

North, D. (2003). Test-driven development is not about unit testing. Java Developer’s

Journal . Retrieved from http://java.sys-con.com/node/37795 8

Ohloh (2009). Ohloh, the open source network. Retrieved from http://www.ohloh.

net/ 41

http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1304738,00.html
http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1304738,00.html
http://java.sys-con.com/node/37795
http://www.ohloh.net/
http://www.ohloh.net/

Quantitatively Evaluating Test-Driven Development 75

Page-Jones, M. (1999). Fundamentals of object-oriented design in uml . Boston, MA:

Addison-Wesley Professional. 26

Pandian, C. R. (2003). Software metrics: A guide to planning, analysis, and applica-

tion. Boca Raton, FL: Auerbach Publications. 19

Ponczak, J., & Miller, J. (2007). Find software bugs, defects using code coverage. Re-

trieved from http://searchsoftwarequality.techtarget.com/news/article/

0,289142,sid92_gci1244258,00.html 35

Rodger, R. (2005). Rant: The evils of indentation. Retrieved from

http://www.richardrodger.com/roller/page/richard/Weblog/rant_the_

evils_of_indentation 36

Schach, S. (2006). Object-oriented and classical software engineering . New York, NY:

McGraw-Hill. 13, 20, 26, 32

Schroeder, M. (1999). A practical guide to object-oriented metrics. IT Professional ,

1 (6), 30–36. 24

Shore, J., & Warden, S. (2007). The art of agile development . Sebastopol, CA:

O’Reilly Media, Inc. 7, 33

Subramaniam, V., & Hunt, A. (2006). Practices of an agile developer: Working in

the real world . Raleigh, NC: Pragmatic Bookshelf. 68

Sun Microsystems (2009). Java 2 platform se 5.0. Retrieved from http://java.sun.

com/j2se/1.5.0/docs/api/ 26

Tate, B., & Gehtland, J. (2004). Better, faster, lighter java. Sebastopol, CA: O’Reilly

Media, Inc. 68

Williams, L., Maximilien, E. M., & Vouk, M. (2003). Test-driven development as a

defect-reduction practice. Software Reliability Engineering, International Sympo-

sium on, 0 , 34. 14

Wilson, B. (2009). It’s not tdd, it’s design by example. Re-

trieved from http://bradwilson.typepad.com/blog/2009/04/

its-not-tdd-its-design-by-example.html 9

http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1244258,00.html
http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1244258,00.html
http://www.richardrodger.com/roller/page/richard/Weblog/rant_the_evils_of_indentation
http://www.richardrodger.com/roller/page/richard/Weblog/rant_the_evils_of_indentation
http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/
http://bradwilson.typepad.com/blog/2009/04/its-not-tdd-its-design-by-example.html
http://bradwilson.typepad.com/blog/2009/04/its-not-tdd-its-design-by-example.html

Quantitatively Evaluating Test-Driven Development 76

Zhu, H., Hall, P. A. V., & May, J. H. R. (1997). Software unit test coverage and

adequacy. ACM Comput. Surv., 29 (4), 366–427. 8

Appendix A

Metrics Analyzer Code

This is the source code for the program that analyzed the XML output from the

Eclipse Metrics plugin. The primary goal of this program was to collect the statistics

from the raw values in the file rather than the aggregate it provides, which allows

exclusions to be specified for generated code.

#!/usr/bin/env ruby

require ’find’

require "rexml/document"

include REXML

class MetricsReader

DECIMAL_PRECISION = 3

def initialize(project)

@project = project

@metrics_filename = "#{project}-metrics.xml"

@exclusions_filename = "#{project}-exclusions.txt"

xml_contents = File.read(@metrics_filename)

@metrics = (Document.new xml_contents).root

@exclusions = get_exclusions(@exclusions_filename)

puts @exclusions

end

Gets the exclusions list. Reads the lines from the exclusions file, converting

from basic wildcards to regular expressions. Thus:

"*Messages.java"

becomes

/.*?Messages\.java/

def get_exclusions(exclusions_filename)

if File.exists?(exclusions_filename)

File.read(@exclusions_filename).split("\n").collect do |exclusion|

Regexp.new(exclusion.gsub(".","\\.").gsub("*",".*?"))

end

Quantitatively Evaluating Test-Driven Development 78

else

[]

end

end

def get_values(abbreviation)

@metrics.elements.to_a("//Metric[@id=’#{abbreviation}’]/Values/Value")

end

Prints the average for a Metric

def print_average(abbreviation, name)

avg = calculate_average(abbreviation)

puts "#{name}: #{display_number(avg)}"

end

Prints the total for a Metric

def print_total(abbreviation, name)

total = calculate_total(abbreviation)

puts "#{name}: #{total}"

end

Prints the value for a Metric (for metrics with no additional information)

def print_value(abbreviation, name)

value = calculate_value(abbreviation)

puts "#{name}: #{value}"

end

Calculates the average for a given Metric abbreviation, ignoring excluded files

def calculate_average(abbreviation)

values = get_values(abbreviation)

total = 0

count = 0

values.each do |value|

if not excluded? element(value)

total = total + value.attributes["value"].to_f

count = count + 1

end

end

total / count.to_f

end

Calculates the total for a given Metric abbreviation, ignoring excluded files

def calculate_total(abbreviation)

values = get_values(abbreviation)

total = 0

values.each do |value|

if not excluded? element(value)

total = total + value.attributes["value"].to_f

end

end

total

end

Quantitatively Evaluating Test-Driven Development 79

def calculate_value(abbreviation)

@metrics.elements.to_a("//Metric[@id=’#{abbreviation}’]/Value")[0].attributes["value"].to_i

end

Builds a full-path name out of an xml Value for exclusion-matching purposes. For example,

<Value name="TarInputStream" source ="TarInputStream.java" package ="hudson.org.apache.tools.tar" value ="1"/>

becomes:

hudson.org.apache.tools.tar/TarInputStream.java:TarInputStream

def element(value)

package = value.attributes["package"]

source = value.attributes["source"]

name = value.attributes["name"]

e = ""

e = package if package

e = "#{e}/#{source}" if source

e = "#{e}:#{name}" if name

end

Checks the exclusion list to see if the element name matches a pattern for exclusion

def excluded?(element)

@exclusions.any? {|exclusion| element =~ exclusion}

end

def display_number(float)

((float*(10**DECIMAL_PRECISION)).round)/10.0**DECIMAL_PRECISION

end

Eclipse Metrics doesn’t save off the names of the Classes in the XML for this metric, which means

that totaling it up like any other metric would wind up including the excluded classes.

So instead of using the ’NOC’ element from the metrics file, we use the total number of elements in

the NOM metric, which is per type and therefore includes all of the classes.

def print_noc

values = get_values(’NOM’)

count = 0

values.each do |value|

if not excluded? element(value)

count = count + 1

end

end

puts "Number of Classes: #{count}"

end

Class Lines of Code is not tracked by Eclipse Metrics, but Number of Methods per Class (NOM) and

Lines of Code per Method (MLOC) are. Multiplying them together yields CLOC.

def print_cloc

puts "Class Lines of Code: #{calculate_average("NOM") * calculate_average("MLOC")}"

end

end

Find.find(File.dirname(__FILE__)) do |path|

if path =~ /(.*)-metrics.xml$/i

project = Regexp.last_match(1)

metrics_reader = MetricsReader.new(project)

Quantitatively Evaluating Test-Driven Development 80

puts "\n\nMetrics for #{project}"

metrics_reader.print_total "NOM", "Number of Methods"

metrics_reader.print_noc

metrics_reader.print_value "NOP", "Number of Packages"

puts "---"

metrics_reader.print_average "LCOM", "Lack of Cohesion Methods"

metrics_reader.print_average "SIX", "Specialization Index"

metrics_reader.print_average "PAR", "Number of Parameters"

metrics_reader.print_average "NSM", "Number of Static Methods"

puts "---"

metrics_reader.print_average "CA", "Afferent Coupling"

metrics_reader.print_average "CE", "Efferent Coupling"

metrics_reader.print_average "RMD", "Distance from The Main Sequence"

metrics_reader.print_average "DIT", "Depth of Inheritance Tree"

puts "---"

metrics_reader.print_average "MLOC", "Method Lines of Code"

metrics_reader.print_cloc

metrics_reader.print_average "VG", "McCabe Cyclomatic Complexity"

metrics_reader.print_average "NBD", "Nested Block Depth"

end

end

	1 Introduction
	2 Test-Driven Development
	Practicing Test-Driven Development
	Benefits of Test-Driven Development
	Effect on Code

	3 Existing Research on Test-Driven Development
	The University of Karlsruhe Study
	The Bethel College Study
	The IBM Case Study
	The Microsoft Case Studies
	The Janzen Study
	Summary

	4 Measuring Code Quality
	Cohesion
	Lack of Cohesion Methods
	Specialization Index
	Number of Method Parameters
	Number of Static Methods

	Coupling
	Afferent and Efferent Coupling
	Distance from The Main Sequence
	Depth of Inheritance Tree

	Complexity
	Size of Methods and Classes
	McCabe Cyclomatic Complexity
	Nested Block Depth

	5 Description of Experiment
	Survey Setup
	Survey Results
	Selecting the Experimental Groups
	Exclusions
	Versions

	Static Analysis Tools

	6 Experimental Results
	Effect of TDD on Cohesion
	Lack of Cohesion Methods
	Specialization Index
	Number of Parameters
	Number of Static Methods
	Overall

	Effect of TDD on Coupling
	Afferent Coupling
	Efferent Coupling
	Normalized Distance from The Main Sequence
	Depth of Inheritance Tree
	Overall

	Effect of TDD on Complexity
	Method Lines of Code
	Class Lines of Code
	McCabe Cyclomatic Complexity
	Nested Block Depth
	Overall

	Overall Effect of TDD
	Threats to Validity

	7 Conclusions
	Further Work

	A Metrics Analyzer Code

